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Abstract 

Graphs are ubiquitous, finding applications in domains ranging from software 
engineering to computational biology. While graph theory and graph algorithms are some 
of the oldest, most studied fields in computer science, the problem of visualizing graphs 
is comparatively young. This problem, known as graph drawing, is that of transforming 
combinatorial  graphs  into  geometric  drawings  for  the  purpose  of visualization. 

Most published algorithms for drawing general graphs model the drawing problem with a 
physical analogy, representing a graph as a system of springs and other physical elements 
and then simulating the relaxation of this physical system. Solving the graph drawing 
problem involves both choosing a physical model and then using numerical optimization 
to simulate the physical system. 

In this dissertation, we improve on existing algorithms for drawing general graphs. The 
improvements fall into three categories: speed, drawing quality, and flexibility. We 
improve the speed using known techniques from both the many-body work in 
astrophysics and the numerical optimization literature. We improve drawing quality both 
by making our physical model more comprehensive than those in the literature and by 
employing heuristics in our optimization procedure to avoid poor local minima. Finally, 
we improve the flexibility of existing approaches both by cleanly separating the physical 
model from the optimization procedure and by allowing the model to include a broad 
class of constraints. 

We are able to demonstrate some of our improvements through theoretical analysis. To 
demonstrate the others, we use an implementation of our approach in the Java 
programming language. 
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1. Introduction 

In 1979, Wetherell and Shannon concluded a paper on "Tidy Drawing of Trees" by 

saying, "We are currently studying methods for the tidy display of other graph structures, 

a subject not covered in the literature" [WS79]. In the past two decades, graph drawing 

has become a vibrant research area. An annotated bibliography from 1994 [DETT94] 

lists over 300 relevant publications, and these do not include the dozens of papers and 

systems presented at the annual symposia on graph drawing since 1993. More recently, 

the authors of the bibliography have published a textbook [DETT99] on graph drawing. 

Most of the work, however, considers special cases. A quarter of the papers in the 

annotated bibliography address the problem of computing planar (crossing-free) drawings 

of planar graphs. A comparable fraction of the work considers layered drawings of 

directed acyclic graphs. While this specificity attests to the relative importance of certain 

classes of graphs, it also reflects the difficulty of solving the general problem. 

Our work addresses general graph drawing. Although the treatment of special cases can 

lead to elegant mathematical results, the practical side of graph drawing requires a greater 

emphasis on generality. Our approach, based on numerical optimization, builds on 

existing approaches for drawing general graphs. We demonstrate the value of our work 

in three ways. First, we show both a theoretical and an empirical improvement in 

performance over the published general graph drawing algorithms. Second, we achieve 

better drawings by incorporating aesthetic elements that the published approaches do not 

take into account. Third, we obtain a more flexible approach by using a numerical 

optimization approach that cleanly separates the objective function from the optimization 

procedure and allows us to incorporate a general class of constraints into our model. 

We begin with an overview of the graph drawing problem and its wide range of 

applications. We then review the previous work in the field, focusing on algorithms that 

address general graphs. We present a general framework for modeling graph drawing as 

a numerical optimization problem, and we show how previous approaches fit into this 

framework. We then present our techniques to address performance, drawing quality, and 

flexibility. Our principle solutions for the performance problem are to use the Barnes- 

Hut procedure to reduce a 6(n2) time computation in the inner loop to 6(n log n), and 

then to replace the commonly used method of steepest descent with the conjugate 

gradient method as a more efficient optimization procedure. Our main improvements in 



drawing quality come from incorporating vertex-edge distance and vertex shape into our 

physical model. Finally, we describe how we incorporate a general class of constraints 

into our model by making the objective function time-dependent and using the method of 

exterior penalties. In fact, this technique of using a time-dependent objective function not 

only makes our approach more flexible, but can also improve both performance and 

drawing quality. We present the results of our work both qualitatively, though a gallery 

of examples, and quantitatively, through both theoretical and empirical analysis. 



2. What is Graph Drawing? 

Before we can talk about graph drawing, we must explain what we mean by a graph. A 

graph is a collection of entities and their relationships. We refer to the entities as the 

vertices of the graph, and to their relationships as edges.1 Each edge pairs two vertices, 

which we call its endpoints. When we are discussing a single graph, we will denote it by 

G, and we will denote the vertex and edge sets as V and E respectively. 

In the simplest case, the vertices and edges have no further information associated with 

them. For example, we can describe the complete bipartite graph K^ by enumerating its 

vertices V = {1, 2, 3, 4, 5, 6} and edges E = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), 

(3, 4), (3, 5), (3, 6)}. Here, the vertex names are just placeholders, since the vertices are 

indistinguishable except where the topology of the graph breaks their symmetry. Figure 
2.1 shows a drawing of K^. 

Figure 2.1: A Drawing of K^ 

In a more typical context, the vertices and edges will have further information associated 

with them—often information that is essential to the sense of the graph. For example, we 

could have a graph where the vertices represent web pages and the edges are links 

connecting them. Here, each vertex would be associated with a URL and possibly further 

attributes, such as the type of its associated document.   Another possibility is that the 

Other authors refer to vertices as nodes and to edges as arcs or links. Our terminology 

is consistent with using the letters V and E to denote the vertex and edge sets, as well as 

the lowercase letters v and e for individual vertices and edges. 



graph could represent a database of terms extracted from a large corpus of text. Here, the 

edges could store the nature of the relationships among the terms. Figures 2.2 and 2.3 

show examples of graphs that could arise in practical applications. 
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One attribute of an edge that we single out is its directedness. An edge can be undirected 

or directed, reflecting whether the relationship between the endpoints is symmetric or 

asymmetric. We call a graph consisting of only undirected edges an undirected graph 

and one consisting of only directed edges a directed graph. If a graph has both undirected 

and directed edges, we call it a mixed graph. In this dissertation, we will focus on 

undirected graphs. The techniques we describe can be used to draw directed graphs as 

well, but other work, which we describe in the following chapter, is more suited to 

drawing directed graphs in such a way as to emphasize the directions of edges. 

We define graph drawing as the transformation of a graph into a visual representation of 

the graph, which we call a drawing. We depict this transformation in Figure 2.4. In a 

typical drawing, we map vertices to boxes or circles on a subset of the plane and map 

edges to lines connecting the boxes that represent their endpoints. 

V: 

E: 

= {1,2,3,4,5,6,7,8} 

= {(1,2), (1,4), (1,5), 
(2,3), (2,6), (3,4), 
(3,7), (4,8), (5,6), 
(5,8), (6,7), (7,8)} 

/ 
/' 

graph drawing algorithm 

Figure 2.4: Graph Drawing 
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Although graph drawing per se is a young field of research, graph drawing as a practical 

art predates computer science. Throughout the sciences, people use graphs to represent 

systems composed of a large number of interacting components, especially when the 

individual components are simple. Physicists and chemists draw graphs that model 

interaction among particles. Electrical engineers draw graphs to represent circuits. Social 

scientists draw graphs of group interaction. Still, the widest use of graph drawing is in 

computer science and information technology, with domains ranging from software 

architecture to semantic networks. Often, graphical visualizations of such systems reveal 

far more structure than textual ones, as per the cliche that a picture is worth a thousand 
words. 



Di Battista et al. break down graph drawing requirements into three basic concepts: 

drawing conventions, aesthetics, and constraints [DETT99]. We briefly describe each of 

these concepts. 

2.1. Drawing Conventions 

Drawing conventions are the basic rules that define the space of admissible drawings. 

Generally, we can think of drawing conventions as global constraints on the space of 

drawings. The drawing conventions specify, among other things, the area that can be 

used for the drawing. Unless we specify otherwise, we will assume that the drawing area 

is a rectangle in the Euclidean plane R . 

Di Battista et al. list some of the more widely used drawing conventions, and Figure 2.5 

shows various drawings of the complete graph K4, for which V = {1, 2, 3, 4} and E = 

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, using some of these conventions: 

Polyline Drawing: each edge is represented as a chain of connected line segments; the 

chain may bend at the connection points. See Figure 2.5 (a). 

Straight-line Drawing: each edge is represented as a single line segment. A special case 

of polyline drawing. See Figure 2.5 (b). 

Orthogonal Drawing: each edge is represented as chain of alternating horizontal and 

vertical line segments. A special case of polyline drawing. See Figure 2.5 (c). 

Planar drawing: no two edges cross; requires that the graph be planar. See Figure 2.5 (d). 

Upward drawing: all directed edges are represented by lines or curves that strictly 

increase in the vertical direction. Requires that the graph have no directed cycles. 

See Figure 2.5 (e) below. 

Grid Drawing: all vertices, edge crossings, and bend-points have integer coordinates. 

Generally, our drawing conventions will include some subset of the above, as well as 

other application-dependent considerations. Our main interest will be in straight-line and 

upward drawings, since these conventions are the most amenable to numerical 

optimization approaches. 



(a) (b) 

CtMs 

k^i^ 
(c) 

(d) (e) 

Figure 2.5: Illustration of Various Drawing Conventions for the Graph K4 

We note that none of the above conventions address vertex shape. We will assume that 

vertices are represented by circles, ellipses, or rectangles. Often, we will use the space 

taken up by a vertex to show a name or some other information (textual or pictorial) 
associated with it. 

2.2. Constraints 

The drawing conventions constrain the general properties of the drawing. Sometimes, we 

use explicit constraints to specify the behavior of particular vertices, edges, or subgraphs. 

The two primary sources of constraints are semantics and user interaction. Semantics, for 

example, might dictate that a given subset of vertices forms a cluster and should be drawn 

in a rectangle that does not include any other vertices. A user, after seeing an 

automatically produced drawing might decide that the drawing looks better if a particular 

vertex is placed to the left of another vertex and then request that the drawing be 

recomputed subject to that constraint. Typical constraints concern absolute or relative 
vertex placement. 



2.3. Preferences 

While it is possible for drawing conventions and constraints to fully determine a drawing, 

it is often more useful to distinguish between hard constraints and soft preferences. For 

example, we could impose a constraint specifying the exact distance between two vertices 

in the drawing, or we could incorporate a preference that the distance between the 

vertices be close to the desired distance. Preferences have two advantages over 

constraints. First, they can be associated with continuous functions, as in the previous 

example, while constraint satisfaction is binary. Second, they can always be combined, 

even when combining analogous constraints might lead to an inconsistency. For 

example, minimizing edge lengths and maximizing the distances between all vertices are 

clearly competing goals; they can, however, be combined in the form of weighted 

preferences. 

Generally speaking, a preference specifies a measure by which we can judge a drawing. 

We quantify these preferences by making them weighted terms in an objective function 

that measures the overall quality of a drawing. The weights reflect the priority assigned 

to each preference. 

Di Battista et al. list the following widely used preferences, which they call "aesthetics": 

Crossings: minimization of the number of edge crossings. 

Area: minimization of the drawing area. Measured using either the convex hull or the 

bounding rectangle. Only meaningful when the drawing conventions prevent the drawing 

from being arbitrarily scaled down. 

Total Edge Length: minimization of the sums of lengths of edges. Only meaningful when 

the drawing conventions prevent the drawing from being arbitrarily scaled down. 

Maximum Edge Length: minimization of the maximum lengths of an edge. Only 

meaningful when the drawing conventions prevent the drawing from being arbitrarily 

scaled down. 

Uniform Edge Length: minimization of the variance in edge length. Only meaningful 

when the drawing conventions prevent the drawing from being arbitrarily scaled down. 



Total Bends: minimization of the total number of edge bends in a polyline drawing. 

Maximum Bends: minimization of the maximum number of edge bends per edge in a 
polyline drawing. 

Uniform Bends: minimization of the variance in the number of edge bends in a polyline 
drawing. 

Angular Resolution: maximization of the minimum angle between edges incident to the 

same vertex in a polyline (especially straight-line) drawing. 

Aspect Ratio: minimization of the ratio between the larger and smaller dimensions of the 
drawing area. 

Symmetry: displaying symmetries of the graph with geometric symmetries. 

The sheer variety of criteria enumerated above suggests that aesthetics are more of an art 

than a science. Given the subjective nature of aesthetics, there are limits to how 

systematic an approach we can take to describing what makes one drawing of a graph 

better than another. Nonetheless, these criteria are sufficiently general that we can start 

from some subset of them, refining our model to suit the needs of a particular application. 

2.4. Summary 

By quantifying and combining drawing conventions, constraints, and preferences, we 

arrive at formulation of graph drawing as a problem in numerical optimization. The 

drawing conventions dictate the variables in our problem space. The constraints define 

the feasible portion of the problem space. Finally, the objective function expresses the 

weighted combination of preferences and defines the overall measure that we seek to 
minimize, subject to the constraints. 



3. Previous Work 

Although graph drawing as such is a young field, it has already generated a substantial 

body of literature. The best general sources of information are the annotated bibliography 

[DETT94], the recently published textbook [DETT99], and the proceedings of the 

annual Symposia on Graph Drawing [GD93, GD94, GD95, GD96, GD97, GD98]. 

Related fields include computational geometry, combinatorial optimization, visual 

languages, and human-computer interfaces. This section describes the small fraction of 

that work that is most relevant to the proposed approaches; the reader is encouraged to 

consult the above references. 

Broadly speaking, there are two kinds of graph drawing algorithms. The first address 

specific classes of graphs. Algorithms of the second kind address general graphs and 

differ mostly in their choice of optimization strategy. 

All of the algorithms that we discuss produce drawings in R , with vertices represented as 

non-overlapping circles (or boxes) and edges as open curves connecting them. They 

generally assume that the input graphs are connected, since it is not difficult to compute 

the connected components of a graph and draw them separately. 

3.1. Algorithms for Specific Classes of Graphs 

There are a variety of algorithms designed for specific classes of input graphs. Three 

classes that have attracted particular attention are trees, directed acyclic graphs, and 

planar graphs. 

3.1.1. Trees 

Trees, the simplest class of connected graphs, are among the most common structures in 

computer science. A tree is a connected, acyclic graph. Most algorithms for drawing 

trees assume that all edges are drawn as straight lines directed away from a specified root 

vertex. Supowit and Reingold [SR83] outline six widely accepted aesthetic constraints 

for what they call a "eumorphous" (well-shaped) drawing of a rooted tree: 

1) The height of a vertex (i.e. its vertical distance from the root) should be proportional 

to its distance from the root measured in tree branches. Hence, vertices are placed on 

discrete horizontal levels. 



2) When the children are ordered (e.g. in a binary tree), left children should be placed 

strictly to the left of their parents. Similarly, right children should be placed strictly to 
the right. 

3) Vertices on a level should have some minimum separation so as not to overlap. 

4) Parents should be centered over their children. 

5) Edges should not cross, i.e. the drawing should respect the planarity of the tree. 

6) Isomorphic subtrees should be drawn congruently, and subtrees that are isomorphic 

when the order of children in all of their subtrees is reversed should be drawn as 
mirror images. 

Figure 3.1 illustrates a eumorphous drawing of a rooted tree. 

Figure 3.1: Eumorphous Drawing of Rooted Tree 

Supowit and Reingold, along with other researchers, aim to minimize the width of the 

tree subject to these constraints. The linear-time algorithm of Reingold and Tilford 

[RT81] satisfies the six constraints but does not achieve the optimal width. Supowit and 

Reingold show that, if vertex positions can be arbitrary real numbers, then the width 

minimization problem can be solved in polynomial time by linear programming [SR83]. 

They show that, if the vertex positions are restricted to the integer lattice, then the 

problem is NP-complete. 



The problem of drawing free trees—that is, trees without a specified root—has received 

far less attention. Eades describes an approach for drawing free trees radially in [Ea92]. 

The algorithm first picks as a root the graph-theoretical center of the tree—that is, a 

vertex that minimizes the height of the tree directed outwards from that vertex. If there is 

more than one center, then the algorithm chooses among them arbitrarily. It then places 

the remaining vertices on concentric circles around the chosen root. Edges are drawn as 

straight lines. The algorithm respects the tree's planarity as a constraint and seeks to 

minimize the variation in edge length. The algorithm draws the tree recursively in linear 

time. Figure 3.2 illustrates a radial drawing of a free tree. 

Figure 3.2: Radial Drawing of a Free Tree 

3.1.2. Directed Acyclic Graphs 

Directed acyclic graphs, like rooted trees, have an inherent direction of flow. They are 

generally used to represent hierarchical structures. Their drawing conventions are similar 

to those for rooted trees, only that, since the graph may not be planar, the constraint of 

planarity is replaced with a preference for avoiding edge crossings. 

The standard approach, originally proposed by Sugiyama et al. [STT81], consists of three 

phases that are illustrated in Figure 3.3. 

The first phase assigns the vertices to levels such that every edge is directed "upwards"— 

that is, from a lower level to a higher one. This phase also creates "dummy vertices" as 

necessary along the edges so that all edges connect vertices (real or dummy) on 

consecutive layers. A long edge (Vj, Vj) is thus transformed into a chain of short edges 

(Vj, dummy^, (dummy!, dummy2), ..., (dummyk, Vj), where k is the number of 

intermediate levels separating the two vertices.   Sugiyama's original approach uses a 



longest-path layering—that is, the level of a vertex corresponds to the number of edges in 

the longest directed path entering the vertex. Gansner et al. propose, as an alternative 

layering method, using linear programming to minimize the total number of dummy 

vertices [GNV88]. 

The second phase determines the ordering of the vertices on each horizontal layer with 

the goal of minimizing the number of edge crossings. Two heuristics for this problem, 

which is NP-complete [GJ83], are to iteratively sort vertices according to the mean or 

median positions of their neighbors on adjacent levels. 

0») 

W U) 

Figure 3.3: Drawing a Directed Acyclic Graph [DETT94] 
(a) original drawing     (b) arrangement of vertices in layers 
(c) vertices permuted to avoid crossings    (d) final drawing 

The third phase uses the layering and ordering constraints of the previous two phases to 

compute a drawing. The usual goal is to minimize the horizontal lengths of edges and the 

number of bends induced by dummy vertices. Many heuristics have been proposed for 

this last step, ranging from linear programming to physically-based simulation. Finally, 

the edges are drawn either as straight lines, polylines that bend at the dummy vertices, or 

splines interpolated from the polylines. 



The first and third phases are generally performed in linear time (at least in practice, e.g. 

by using the simplex method for linear programming), and hence the running time is 

dominated by the second phase, each iteration of which requires linear time. A 

clarification: when we say that the running time is linear, we mean linear in the number of 

vertices and dummy vertices. The number of dummy vertices can be quadratic in the 

number of vertices—even if the graph is sparse. Nonetheless, the overall performance is 

generally considered sufficient to be practical. 

The main drawback of the approach of Sugiyama et al. is that the layering constraints and 

the bends (or curves) induced by dummy vertices can cause drawings to be unaesthetic 

and even illegible. The approach is also somewhat inflexible, in that the aesthetic criteria 

are hard-wired into the algorithm. 

Still, the approach of Sugiyama et al. is sufficiently effective to have become the basis for 

algorithms that draw directed acyclic or almost acyclic graphs. If a graph has one or more 

directed cycles, then a subset of the edges can be reversed to make the graph acyclic. 

Unfortunately, finding the minimum number of edges to reverse is NP-hard [GJ83], and 

reversing a large number of edges makes the flow of the drawing meaningless. There are 

many heuristics, the simplest being to reverse the back edges of a depth-first traversal, but 

none have provable performance guarantees except for dense graphs [ES90]. Also, like 

trees, directed acyclic graphs can be drawn on radial rather than horizontal levels [Ca80, 

RM88]. 

3.1.3. Planar Graphs 

A large amount of work has considered the problem of drawing planar graphs. The key 

constraint is that the drawing be planar—that is, that it have no edge crossings. The 

published algorithms achieve this aesthetic first by testing for planarity and computing an 

embedding in the plane, and then transforming this embedding into a drawing. We refer 

the reader to the annotated bibliography [DETT94] for a listing of linear-time algorithms 

that test planarity and compute an embedding. For the transformation of the embedding 

into a drawing, the algorithms pursue various goals. Generally, edges are drawn either as 

straight lines or as polylines made up of only horizontal and vertical segments. Drawings 

with the latter kind of edges are called orthogonal drawings. Again, we refer the reader to 

the annotated bibliography for a fuller treatment. 



3.2. Algorithms for General Graphs 

Finally, we arrive at the algorithms that consider general graphs. Here, there are two 

schools of thought. The topology-shape-metrics approach generates orthogonal drawings 

of general graphs by prioritizing the aesthetics, while the force-directed approach 

expresses the aesthetic preferences as force laws that determine the negative gradient of 

an implicit objective function. We will briefly describe the topology-shapes-metrics 

approach for completeness, but will devote an entire chapter to the force-directed work 

that is more relevant to our own numerical optimization approach. 

3.2.1. The Topology-Shapes-Metrics Approach 

The topology-shapes-metrics approach breaks down the graph drawing process into three 
steps. 

The first step addresses topology by planarizing the drawing—that is, determining a set 

of edge crossings and replacing them with dummy vertices so that the resulting graph is 

planar. The goal is to minimize the number of crossings; since this problem is NP-hard 

[GJ83], planarization algorithms use heuristics such as computing a maximal planar 

subgraph and then routing the remaining edges greedily. The penalization step also 

computes a planar embedding for the planarized graph. 

The second step addresses shape by orthogonalizing the drawing—that is, assigning to 

each edge in the embedding an alternating chain of horizontal and vertical line segments. 

Here, the goal is to minimize the number of bends. Although it is NP-hard to minimize 

the number of bends over all possible embeddings of a planar graph [GT94], we can use a 

network flow algorithm to minimize the number of bends for a particular embedding in 

quadratic time [Ta87]. If we are more concerned with performance than with bend 

minimization, then we can compute a drawing with 0(1) bends per edge in linear time 
[BK94]. 

The third step addresses metrics by compacting the drawing so as to minimize area— 

subject to the embedding and edge bends computed in the previous two steps. A drawing 

of area 0(n2) can be computed in 0(n+b) time [PT98]. 



3.2.2. The Force-Directed Approach 

Force-directed algorithms, for the most part, formulate the drawing problem as one of 

unconstrained numerical optimization. They rely on a physically-based model, the 

principle aesthetic consideration being that proximity in the network should correspond to 

proximity in the drawing. The algorithms quantify their preferences with force laws that 

imply an objective function or energy. The force-directed algorithms vary mostly in their 

choice of force laws or their optimization strategy. Because our work is primarily 

concerned with drawing general graphs, we will consider the previous work here in some 

detail. 



4. The Force-Directed Approach 

Force-directed approaches use a physical analogy to model the graph drawing problem. 

They model the drawing as a system of forces acting on the vertices, and then aim to find 

a drawing where the net force acting on each vertex is zero. Equivalently, they associate 

a potential energy with the drawing, and seek a configuration for which this energy of the 
drawing is locally minimal. 

Some early force-directed algorithms predate the recent interest in graph drawing per se. 

These include Tutte's barycenter method [Tu63] and force-directed algorithms for circuit 

layout [FCW67, QB79]. Here, however, we focus on more recent work that explicitly 

addresses the general graph drawing problem. 

A force-directed approach consists of two components. The first is the force or energy 

model that quantifies the goodness of a drawing. The second is an optimization 

algorithm for computing a drawing that is locally optimal with respect to this model. 

In this chapter, we outline the published work on force-directed graph drawing. In the 

following chapter, we present our own force model and compare our force laws to those 
used in other models. 

4.1. The Spring Embedder Model 

Eades published a force-directed graph drawing algorithm which he called the "spring 

embedder" [Ea84]. In his spring embedder model, edges act as springs acting on their 

endpoints with a logarithmic force law and vertices as positive electrical point charges 

repelling each other with an inverse-square force law. Figure 4.1 illustrates this physical 
model. 

We note that the "forces" in this and other "force-directed" algorithms do not induce 

acceleration. There is no kinetic energy or momentum in the physical model; rather, each 

iteration reduces the potential energy of the system. As a result, the system can be 

described using first-order, rather than second-order, differential equations. 



Eades's optimization algorithm creates an initial drawing of the graph randomly and then 

performs a fixed number of steepest descent iterations. On each iteration, all vertices 

move simultaneously in proportion to the net force exerted on them. 

Eades claims that his algorithm produces good layouts for many graphs but performs 

poorly on dense graphs, graphs with dense subgraphs, and graphs with a small number of 

bridges. He also claims that his algorithm has an acceptable running time for graphs with 

less than fifty vertices. 

Unfortunately, the vagueness of these claims makes them difficult to analyze or criticize. 

We can say, however, that the logarithmic spring law gives rise to an unaesthetically high 

degree of variance in edge length, and that some of his parameters—for example, the 

fixed number of steepest descent iterations—are not suitable when we increase the size of 

the graph. Indeed, Eades admits that he only looked at graphs of at most fifty vertices, his 

justification being that applications usually break up larger graphs into smaller subgraphs. 
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Figure 4.1: The Spring Embedder Model 

4.2. Kamada and Kawai's Approach 

Kamada and Kawai's approach modifies the spring embedder model by eliminating the 

electrical charges and instead associating a spring with every pair of vertices, rather than 

just with the edges [KK89]. The springs act in accordance with Hooke's Law: the force 

exerted on the vertices is proportional to the difference between the spring's rest length 



and the actual distance between the vertices. If the actual distance is larger than the rest 

length, then the spring pulls the vertices closer together; if the distance is smaller, then 

the spring pushes them apart. For each pair of vertices, Kamada and Kawai make the 

spring's rest length proportional to the shortest path in the graph connecting the two 

vertices associated with the spring, and the spring's stiffness inversely proportional to its 

rest length. Kamada and Kawai conceptualize their model in terms of energy rather than 

forces: they integrate Hooke's Law to obtain a potential energy for each spring that is 

quadratic in the difference between its rest length and the actual distance between the two 
vertices. 

Kamada and Kawai's approach also differs from that of Eades in its optimization 

algorithm. Rather than moving all vertices at once, their algorithm moves only one 

vertex in the drawing per iteration. On each iteration, the algorithm moves the vertex 

experiencing the greatest net force to a point of locally minimal energy using a variation 
of the Newton-Raphson method. 

Kamada and Kawai's algorithm is not only conceptually elegant, but also produces very 

aesthetic drawings. The main drawback of their approach is computational: their model 

requires preprocessing step that computes the shortest paths for all node pairs. This 

computation, which requires 9(n3) time and 0(n2) space (see the discussion below) makes 
their approach impractical for large graphs. 

4.3. Fruchterman and Reingold's Approach 

Fruchterman and Reingold's model is similar to the spring embedder model [FR91]. It 

preserves the original concept of repulsive vertex charges and attractive edge springs but 

modifies the force laws for the sake of computational efficiency. They replace the 

logarithmic spring force law with one that attracts the endpoints of an edge in proportion 

to the square of the distance between them. Their vertex repulsion force is inversely 

proportional to the distance between the vertices, while Eades's model makes the 

repulsion inversely proportional to the square of the distance. Both of these changes 

reduce computation without changing the general character of the force model. 

Fruchterman and Reingold's optimization algorithm, like Eades's steepest descent 

algorithm, uses the force laws to compute the direction in which vertices move. 

However, it determines the extent of their movement according to a "cooling schedule," 

inspired by the method of simulated annealing, that limits the distance a vertex can move 



as a decreasing function of the number of iterations performed. Frick et al. address the 

inefficiency of Fruchterman and Reingold's cooling schedule by introducing the notion of 

local vertex temperatures and also attempting to detect vertex oscillation and rotation of 

the entire drawing [FLM94]. 

Fruchterman and Reingold claim that the main goals of their approach are speed and 

simplicity, and that the main advantage of their approach over others is the former. Like 

others, they do not address the problem of drawing large graphs, for which their fixed 

number of iterations would be insufficient. All of the examples in their paper, for which 

they claim that their algorithm produces drawings in less than ten seconds on a SPARC 

station 1, are graphs of under forty vertices. A harsher criticism of their approach, 

however, is that the optimization procedure is unnecessarily complicated. The cooling 

schedule that they use to determine how much the vertices move on each iteration is a 

poor substitute for a line search (which we discuss in Chapter 7); in fact, it can cause their 

algorithm to converge to a point that is not locally optimal. 

4.4. Models that Address Edge Crossings 

The force-directed models described above focus on two aesthetics: keeping edges short 

and distributing vertices uniformly throughout the drawing area. In Kamada and Kawai's 

model, one aesthetic summarizes these two: making the distance between vertices 

correlate to the lengths of the shortest paths connecting them in the graph. None of these 

models, however, takes edge crossings into account. 

Two models that consider edge crossings are those of Davidson and Harel [DH96] and of 

Tunkelang [Tu94]. Both are energy models that include a term proportional to the 

number of edge crossings. Davidson and Harel use a simulated annealing algorithm for 

optimization, while Tunkelang uses a collection of local optimization heuristics. The 

discreteness of the edge crossing term rules out the continuous optimization methods 

used by the other force-directed approaches. 

4.5. Computational Complexity 
All of the force-directed approaches we have described are iterative. We therefore 

consider the computational complexity of performing a single iteration, as well as the 

number of iterations necessary to converge to a locally optimal drawing. 



For the approaches of Eades, Fruchterman and Reingold, and variations thereof, the cost 

of performing an iteration is essentially that of computing the net force acting on every 

vertex. In a graph of n vertices and m edges, there are m springs and % n (n-1) pairs of 

vertices. Hence, the cost of computing all of the forces is 6(n2). The number of 

iterations necessary for convergence is poorly understood, but the consensus seems to be 

that a steepest descent approach requires a number of iterations that is linear in the 

number of vertices. Hence, the overall running time is 6(n3). 

Kamada and Kawai's approach, however, is quite different. Because it only moves one 

vertex per iteration, it can recompute the forces incrementally in 6(n) time. The catch, 

however, is in the time and space necessary for the preprocessing step of computing all 

shortest paths. Kamada and Kawai's algorithm performs this computation in 6(n3) time, 

though this time could be reduced to 6(nm log n) for sparse graphs by executing 

Dijkstra's single-source shortest paths algorithm for each vertex [CLR90]. Even for 

sparse graphs, however, storing the computed shortest paths requires 6(n2) space. 

Kamada and Kawai claim that the number of iterations necessary for convergence is 

linear in the number of vertices. Hence, the overall running time is dominated by the 
preprocessing time. 

4.6. Other Force-Directed Work 

The simplicity of the force-directed approach has invited endless variations, a few of 

which we list here. Sugiyama and Misue use "magnetic" springs and fields that try to 

make edges conform to particular orientations [SM94]. Ignatowicz uses "orthogonal" 

springs to try to make edges meet at right angles [Ig95],. Coleman and Parker apply a 

variety of aesthetics to Fruchterman and Reingold's algorithm [CP96]. 

Two recent papers incorporate constraints into the spring embedder model. Wang and 

Miyamoto introduce absolute constraints on vertex position, constraints that restrict 

relative vertex position, and cluster constraints that cause the algorithm to treat subgraphs 

independently of each other [WM95]. He and Marriott allow linear constraints, as well 

as "suggested values" for vertex positions [HM96]. 

4.7. Summary of Problems in Published Approaches 

The force-directed approaches of Eades and others cast the graph drawing problem into a 

framework of numerical optimization. Unfortunately, they do so without benefiting from 

the wealth of knowledge that numerical optimization offers as an established discipline. 



Most of the papers of force-directed graph drawing barely even acknowledge that they are 
using numerical optimization as a framework. In general, they do not take sufficient 
advantage of results from other fields. 

The most obvious flaw of the published force-directed algorithms is that they do not scale 
gracefully. The ever-increasing speed of hardware cannot keep up with a running time 

that is 6(n ), much as cheap memory is not cheap enough for us to use an algorithm that 

requires 6(n ) space. Our principle contribution to the field is to apply results from the 
fields of numerical optimization and many-body simulation to reduce this asymptotic 
running time, as well as to create an approach that meets Fruchterman and Reingold's 
goals of speed and simplicity. 



5. Modeling Graph Drawing as an Optimization Problem 

In this chapter, we formally describe the force-directed approach for modeling general 

graph drawing as a numerical optimization problem. 

5.1. Output Variables 

We denote the input graph by G. G consists of the vertex set V a {v1s v2 v„} and the 

edge set E = {e^ e2 em}.   We denote the two endpoints of an edge e by from(e) 

and to(e). Since our edges are undirected, the ordering of the endpoints is arbitrary. 

We will assume for the next few chapters that all vertices are mapped to dimensionless 

points and all edges to straight line segments connecting their endpoints. While we 

primarily intend our model for drawings in the plane, the model applies without 

modification to drawings in higher dimensional spaces. 

We define the output variables x(Vj)—or X-, for short—to be the position vectors of 

vertices vi; for i equal to 1, 2 n. For a given graph G, we denote a drawing D by the 

n-dimensional vector of vectors [xu x* ...*„]. Because the edges are straight line 

segments, the drawing of G is completely specified by this vector of vertex positions. 

5.2. Force Laws 

As we described in the previous chapter, the force-directed approach models graph 

drawing using a physical analogy. We use a force model in which our force laws produce 

a vector that is the negative gradient of an implicit energy function we seek to minimize. 

There are force laws corresponding to different aesthetic criteria: 

Springs. We associate a spring with each edge. A spring pulls the endpoints of the edge 

it represents towards each other when their distance exceeds the spring's rest length and 

pushes them away from each other when their distance is smaller than the rest length. If 

the rest length is zero, then the spring always pulls the endpoints towards each other. 

Vertex-vertex repulsion. All vertices push each other away in order to avoid overlap 

among vertices and to spread the vertices out uniformly throughout the drawing area. 

The magnitude of this repulsion force for a given pair of distinct vertices is a decreasing 
function of the distance between the two vertices. 



Vertex-edge repulsion. Vertex-vertex repulsion may not prevent a vertex from being 

placed so close to an edge—possibly overlapping it—that the edge appears to be incident 

to the vertex. Hence, we include a term in the force model for every vertex-edge pair; 

again, the magnitude is a decreasing function of the distance between the vertex and edge. 

Although we will refer to the energy of a drawing when we discuss the numerical 

optimization procedure, we will mostly discuss the negative gradient of the objective 

function, which is the vector corresponding to the net forces on all of the vertices. 

5.2.1. Springs 

Since the edges specify which vertex pairs have a direct relationship, the corresponding 

springs serve to exhibit the importance of these relationships in the drawing. 

The simplest of spring laws is Hooke's Law with a rest length of zero. Using Hooke's 

Law for the springs gives us, for edge eu a force of magnitude kx attracting each endpoint 

towards the other, where x = llx(from(ej)) - x(to(ej))ll and k is a constant representing 

the stiffness of the springs. We could assign a different stiffness kj to each edge eg to 

reflect the relative importance of each edge; the suffer springs would correlate in smaller 

edges in an optimal drawing. 

Hooke's Law (with a rest length of zero) is computationally appealing because the force 

vector can be computed using only one vector subtraction and one scalar multiplication. 

In fact, if the coordinates and spring constant(s) are integers, then the force vector can be 

computed exactly using only integer arithmetic. 

Fruchterman and Reingold, however, found that they had more success using a quadratic 

spring force—that is, a force of magnitude proportional to llx(from(ej)) - x(to(ej))ll . 

We will discuss the constant of proportionality in a moment. 

Fruchterman and Reingold observed that a linear spring force is often not strong enough 

to overcome poor local minima—that is, local minima in the objective function that are 

far inferior to the global minimum. Hence, they were willing to incur the additional 

arithmetic operations (which include a square root) necessary for a quadratic spring force. 

They also experimented with using higher order powers for the spring force, but rejected 

them on the grounds that the were more costly to compute. In fact, a cubic spring force 



would be less expensive to compute than a quadratic force, since it does not require 

computing a square root. We did find, however, that using higher order powers for the 

spring force slows down our optimization procedure by making the force laws less 
smooth. 

Eades's original spring force for the spring embedder model was logarithmic, the 

magnitude of the force being proportional to log(llx(from(ej)) - x(to(ej))ll / x0), where 

x0 is a user-specified constant. A fact that Eades does not mention is that this spring 

force becomes repulsive (rather than attractive) when llx(from(ej)) - x(to(ej))ll < x0. 

Regardless of this short-range behavior, we found, as we discussed earlier, that a 

logarithmic spring force leads to an unaesthetically high degree of variance in the edge 
lengths. 

Kamada and Kawai use an model that relies exclusively on springs. Instead of only 

associating springs with the edges, they associate a spring with every pair of distinct 

vertices. Their springs conform to Hooke's Law; the rest length and stiffness of each 

spring depend on the length of the shortest path in the graph connecting the two vertices. 

If the shortest path connecting vs and vf has a length of shortestPath(Vj, Vj) edges, then 

the rest length of the corresponding spring is proportional to shortestPath(Vj, Vj), while 

the stiffness is proportional to 1/shortestPath(Vj, Vj). In other words, the magnitude of 

the spring force that each pair of distinct vertices (Vj, Vj) exert on each other is 

proportional to (1 / shortestPath(Vj, Vj)) • I llx, - X/ll - c • shortestPath(vi9 Vj) I, 

where the constant C reflects the desired length of an edge. As Kamada and Kawai note, 

their model applies to graphs with either unit edges or weighted edges; in the latter case, 

shortestPath(V|, Vj) denotes the sum of weights along the shortest path connecting 
distinct vertices Vj and Vj. 

As we noted in the previous chapter, Kamada and Kawai's model relies on a time and 

space-intensive pre-processing phase to compute and store the 9(n2) shortest path lengths. 

Moreover, as we will see later, associating springs with all vertex pairs prevents us from 

using many-body simulation methods to reduce computation. Hence, we stick to a model 
of springs and repulsion. 

Our own experiments agree with Fruchterman and Reingold's observation that quadratic 

spring force laws work better than linear springs to avoid poor local minima, and we 

found that using higher order polynomials for the spring laws slowed down our 



optimization procedure. We therefore use Fruchterman and Reingold's quadratic spring 

law. In Chapter 9, we describe a modification to this law that takes vertex shape and size 

into account. 

5.2.2. Vertex-Vertex Repulsion 

If our objective function consisted only of springs of rest length zero, then the globally 

optimal drawing would assign all vertices to a single point. Making the rest lengths non- 

zero would ameliorate the situation somewhat, but edge springs alone are insufficient to 

produce an acceptable drawing. For example, let us consider the three-vertex path where 

V = {1, 2, 3} and E = {(1, 2), (2, 3)}. A globally optimal drawing would space the 

vertices uniformly along a line. In the absence of a force that involves vertices 1 and 3, 

these two vertices could even be assigned to identical coordinates. 

As we have discussed, we reject Kamada and Kawai's solution of springs for all node 

pairs because of the impractical time and space requirements of the preprocessing step. 

Instead, we introduce vertex-vertex repulsion terms into the physical model. 

In Eades's force model, vertices repel each other as if they were like-charged particles 

acting in accordance with Coulomb's inverse-square law. Every pair of distinct vertices 

Vj and Vj repel each other with a force whose magnitude is proportional to 1/IIX/ - Xyll 

When two vertices have identical coordinates, the magnitude of the repulsion force goes 

to infinity. We therefore disallow assignment of distinct vertices to identical coordinates. 

If we ever encounter a drawing where this situation occurs, we randomly separate the 

coincident vertices by a small distance. 

Fruchterman and Reingold, concerned with reducing the number of arithmetic operations 

per repulsion computation and preferring to avoid taking square roots, use a force law that 

is inverse rather than inverse square. The magnitude of the repulsion force in their model 

is proportional to 1 /I lx/ - X/l I. 

Now, we can discuss the constants of proportionality in Fruchterman and Reingold's 

model. Fruchterman and Reingold define the constant k to denote the rest length of an 

edge. They choose their constants of proportionality for the spring and repulsion laws so 

that, when the length of an edge is k, then the spring and vertex-vertex repulsion forces 

exerted by the endpoints cancel out.  In other words, two vertices joined by an edge, in 



the absence of additional forces exerted on them, exert no net force when the distance 

between them is exactly k. When they are closer, the repulsion is stronger than the spring 

and pushes them apart; when they are further, the spring is stronger and pulls them 
towards each other. 

The constants of proportionality are 1/k for the quadratic spring force and k2 for the 

inverse vertex-vertex repulsion force. When the two endpoints of an edge are distance k 

apart, both forces have magnitudes of k and cancel each other out. 

One issue that receives little attention in the force-directed graph drawing literature is that 

vertex-vertex repulsion forces serve two distinct purposes. One is to avoid vertex 

overlap. It is not enough that vertices be assigned distinct coordinates; since vertices are 

generally drawn as rectangles or ellipses with information inside them, it is preferable that 

they be drawn far enough apart from each other to be legible. The other purpose is to 

distribute vertices uniformly throughout the drawing space. This second goal is quite 

different from the first, and is generally a lower priority that has more to do with 

aesthetics—e.g., display of symmetry—than with legibility. 

While the magnitude of the vertex-vertex repulsion force does decrease as a function of 

the distance between the vertices, the long-range effects of an inverse force law like that 

of Fruchterman and Reingold can be too strong, resulting in pockets of undesirably high 

local density. We therefore split the vertex-vertex repulsion force into a stronger short- 

range force and a weaker long-range force. When the distance between two vertices is 

less than k, we use an inverse repulsion law; when the distance exceeds k, we use a 

weaker inverse-square law. In order to achieve computational stability, we make the 
magnitude of the repulsion force continuous at k. 

This way of splitting the forces is admittedly inelegant, but is a first step towards adapting 

the concept of vertex-vertex repulsion to address the distinct issues of avoid vertex 
overlap and distributing vertices uniformly. 

We use the same constants of proportionality as Fruchterman and Reingold for the spring 

forces (1/k) and the short-range inverse repulsion (k2). To achieve continuity, we use a 

constant of k for our long-range inverse-square repulsion law. 



In Chapter 9, we will discuss how node shape and size affect the vertex-vertex repulsion 

law. In Chapter 8, we will also discuss the computational consequences of choosing a 

weaker or stronger repulsion law, and how we can use a time-dependent gradient to 

improve performance. 

5.2.3. Vertex-Edge Repulsion 

In the force-directed models we have discussed, all of the forces involve vertex pairs. 

Sometimes these forces allow a vertex to be very close to an edge. When an edge is 

short, then the vertex-vertex repulsion will probably push vertices away from it. When an 

edge is long, however, the vertex-vertex repulsion may not prevent a vertex from being 

very near the edge, since it can do so without being that close to either of the endpoints. 

Our concern is with vertex-edge overlap. If a vertex overlaps an edge or is placed very 

close to it, then it becomes difficult or impossible to determine if the edge is incident to 

that vertex. Hence, we need a strong short-range vertex-edge repulsion term to avoid this 

situation. Since we are not using vertex-edge repulsion to spread out the vertices 

uniformly, we do not need the force to be long-range at all. We do, however, need to 

make the repulsion force continuous so that we have computational stability. 

We consider two cases for vertex-edge repulsion. In the first case, the point on the edge 

closest to the vertex is one of the endpoints. In the second case, the point closest to the 

vertex lies strictly between the endpoints. 

In the first case, our vertex-edge repulsion force acts much like the short-range inverse 

vertex-vertex repulsion force acting on the vertex and the endpoint nearest to it. The only 

difference is that, in order to make the vertex-edge repulsion force both short-range and 

continuous, we subtract k from the magnitude of the force. Accordingly, the magnitude 

of the force is CveCC^/x) - k) when x, the distance between the vertex and the closer 

endpoint, is less than k (we will discuss Cve in a moment). This force pushes the vertex 

and the endpoint closest to it away from each other; it does not affect the further endpoint. 

Indeed, it only amplifies the vertex-vertex repulsion force that the two vertices already 

exert on each other. We need this force, however, to ensure continuity with the second 

case. 

The second case is more complicated. First, we compute the distance X between the 

vertex on the edge by projecting the former onto the latter. Let us denote the vertex by v, 



the edge by e, and the projection of v onto e (that is, the point on the edge closest to v) by 

p. Let a = lip - *(from(e))ll / llx(to(ej) - x(from(ej))ll. By assumption, a e [0, 1]; 

the boundary situations (a = 0, a = 1) represent the first case, where the point on the 
edge close to v is an endpoint. 

We can now describe the vertex-edge repulsion force law for the second case. Vertices V 

and from(e) repel each other with a force of magnitude (1 -cOCveWkVxJ-k). 

Symmetrically, vertices v and to(e) repel with a force of magnitude (cOCveftkVxJ-k). As 

we can see by setting a to 0 or 1, the boundary cases are continuous. 

The constant Cve is a non-negative weight that reflects the priority of avoiding vertex- 

edge overlap. We have found that a small value of cve works well; our own 
implementation sets it to 0.1. 

5.3. Constraints 

Constraints can be either equalities or inequalities in the output variables. A drawing that 

satisfies all of its constraints Ci, C2)... is said to be feasible, and the set of such drawings 

is said to be the feasible space of drawings. If the set of constraints is empty, then all 

drawings are feasible, and the problem is said to be unconstrained. 

5.3.1. Penalty Functions 

For every constraint Cj, we will require an associated penalty function p, that measures 

the distance of a drawing to the nearest drawing that satisfies C,-. We can define such 

penalty functions for both equality and inequality constraints. The requirement that these 

penalty functions exist allows us to use the method of exterior penalties to perform 

constrained optimization. We will describe this method in Chapter 8. 

5.3.2. Constraints versus Preferences 

It is often possible to quantify aesthetic criteria either as constraints or as terms in the 

objective function. In the latter case, the criteria become preferences that are combined 

and prioritized according to their relative weights. The choice of whether to represent an 

aesthetic criterion with constraints or preferences is key to the modeling problem, so we 

will discuss the advantages and disadvantages of each type of formulation. 

For example, we may have two vertices that are very strongly related. A simple way to 

express the strength of their relationship in the drawing is to constrain them to lie within a 



certain distance of each another. Alternatively, we could represent this strength using a 

spring term in the objective function with a high spring constant. 

The main advantage of constraints is their simplicity. If we have non-negotiable aesthetic 

criteria and can express them as boolean predicates, then constraints provide a 

straightforward mechanism for doing so. Typical constraints address minimal separation 

between nodes, drawing boundaries, clustering, and edge direction. 

Constraints, however, have two major disadvantages. First, their binary nature limits 

their expressiveness. In the example above, we can use constraints to specify a minimum 

node separation, but our formulation does not favor larger distances over small ones. The 

second problem is more serious: they generally add complexity to the optimization 

process and thus slow it down. Here, we must accept that there is a trade-off between 

speed and flexibility. 



6. Computing the Gradient Efficiently 
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The 6(n ) running time of most of the published graph drawing algorithms effectively 

limits their domain to very small graphs. To draw larger graphs, we must dramatically 
reduce the running time. 

In this chapter, we focus on making the computation of the gradient as efficient as 

possible. In particular, we attack the bottleneck of the published force-directed 

approaches—the 0(n ) computation of repulsion forces. After discussing two simple but 

problematic methods that reduce this computation to 6(n), we discuss more sophisticated 

approaches drawn from the many-body simulation literature. 

6.1. Computing the Gradient Naively 

In order to compute the gradient of a drawing as we defined it in the previous chapter, we 

need to take a sum of 0(m) spring forces, G(n2) vertex-vertex repulsion forces, and 

6(nm) vertex-edge repulsion forces. Even without considering vertex-edge repulsion 

forces, we would require 0(n2) time to compute the gradient straightforwardly—that is, 

by summing all of the spring and vertex-vertex repulsion forces to compute the net force 
acting on each vertex. 

A running time of 0(n ) or 0(nm) for a single gradient computation severely limits the 

size of graphs that we can draw. For dense graphs—that is, where m is 0(n2)—we have 

little hope of doing better unless we can somehow summarize the graph in a smaller 

representation. For example, we could take a divide-and-conquer approach that partitions 

the vertices into subsets, draws each subset independently, and then draws the graph of 

subsets as if each subset were a single large vertex. This partitioning problem, however, 

is beyond the scope of this dissertation. We thus assume we cannot avoid computing the 

spring forces, and this computation requires 0(m) time. 

For sparse graphs, however, there is a wide gap between 0(m) and 0(n2). Indeed, for 

sparse graphs, we spend most of the computation on the repulsion forces—that is, 

assuming that we compute these forces naively. Accordingly, we devote our efforts to 

computing these repulsion forces more efficiently. 



6.2. Simple 0(n) Approximations for Computing Vertex-Vertex Repulsion 

In the force-directed graph drawing literature, two techniques appear for approximating 

the computation of the vertex-vertex repulsion forces. Fruchterman and Reingold 

describe a "grid variant" of their algorithm that ignores repulsion forces between vertex 

pairs whose distance exceeds a threshold of 2k, using an auxiliary grid structure to reduce 

computation. As we discussed in the previous chapter, k is the rest length of an edge— 

that is, the distance at which the two endpoints of an edge exert no net force on each other 

because the spring and repulsion forces cancel out. Fruchterman and Reingold claim that 

this approximation produces drawings that are "nearly equivalent" to those obtained 

without approximation. They note that this approximation of the repulsion forces has a 

running time that is 0(n) when the vertex distribution in the drawing area is 

"approximately uniform"; the efficiency of their grid structure depends on the uniformity 

of the distribution. Coleman and Parker suggest the alternative approach of "centripetal 

repulsion"—that is, repulsion from the centroid of the drawing. The cost of this 

approximation is 6(n) time (and no additional space) regardless of the distribution of 

vertices. 

6.2.1. Distance Cut-Offs 

Distance cut-offs are a conceptually simple approach to approximating vertex-vertex 

repulsion. Since the magnitude of the vertex-vertex repulsion forces decays rapidly with 

distance between the two vertices, we can ignore repulsion between far-away vertices 

and only incur a small additive error in the gradient. Moreover, we can implement 

distance cut-offs, as Fruchterman and Reingold do, with a straightforward data-structure: 

we partition the drawing space uniformly into a grid of square cells where the side of each 

square is the cut-off distance. Fruchterman and Reingold choose their constants so that 

k2!! is proportional to the area of the drawing space, making the number of grid cells— 

and hence the additional space required for the grid—6(n). 

We can easily determine a bound on the maximum additive error caused by using 

distance cut-offs. In Fruchterman and Reingold's force model, the magnitude of the 

repulsion force between nodes Vj and Vj is k2 / llx/ - Xyll. When llx/ - Xyll = 2k, this force 

has a magnitude of k/2. Hence, the maximum additive error in computing the magnitude 

of each repulsion force is k/2. 

While the additive error resulting from distance cut-offs is small, they are unsatisfactory 

for two reasons. The first is basic: by ignoring long-distance repulsion forces, we inhibit 



most of the effect that vertex-vertex repulsion would normally have in distributing the 

vertices uniformly throughout the drawing space. The second is that distance cut-offs 

cause problems for the optimization procedure. In Fruchterman and Reingold's model, 

the cut-offs make the force model discontinuous wherever the the distance between two 

vertices is exactly 2k, since the magnitude of the repulsion force jumps from k/2 to 0. 

Such discontinuities can cause a optimization procdure to oscillate around them. We can 

remove the discontinuties using the technique we applied to our short-range vertex-edge 

repulsion force—that is, we can make the magnitude of the vertex-vertex repulsion force 

1iC/\\Xi- X/ll - k/2 so that it is continuous at l|jr# - Xyll = 2k. Fruchterman and Reingold's 

algorithm handles the discontinuties by dampening forces using a "cooling schedule", but 

there is no guarantee that the drawing to which it converges will be locally optimal. 

We can lessen the consequences of distance cut-offs by increasing the cut-off distance. 

Assuming that the graph is connected, there always exists a cut-off distance that has no 

effect on the objective function—namely, any value greater than the diameter of the 

optimal drawing. Doing so, however, defeats the entire purpose of the approximation, 
which is to reduce computation. 

Indeed, the efficiency of Fruchterman and Reingold's grid variant hinges on the 

assumption that the number of vertices within the cut-off radius of a vertex is, on average, 

9(1). If we further assume a uniform distribution of vertices in the drawing space, then 

this requirement implies a 6(k) cut-off distance, since the expected number of vertices 

within a cut-off radius of r is 0(r2/k2). As a result, modifying the grid variant to use a 

cut-off distance of r increases the running time (assuming uniform vertex distribution) to 

approximately compute repulsion forces from 9(n) to 9(r2n/k2), where r is at most 

O(kVF). If r is greater, then we may as well use the naive 9(n2) approach. 

The assumption that the vertex distribution will be "approximately uniform" is, however, 

somewhat questionable. As shown in Figure 6.1, a cycle of n vertices with edges of 

length k requires a drawing area of 9(k2n2) to be drawn as a regular polygon—which is 

accepted as the optimal way to draw an undirected cycle. Fruchterman and Reingold's 

grid variant can handle this situation in a few ways. One possibility is to impose a 

drawing space of area 9(k2n), in which case the boundary will severely constrain the 

drawing. If the area of drawing space is 9(kV), then there is the question of choosing 

the number of grid cells. If there are 9(n) grid cells, then, as the drawing approaches its 

optimum, each of the 9(Vn) cells on the perimeter will contain 9(Vn) vertices, making the 



1.5» total running time to compute repulsion forces 6(n " ). In order to reduce the average 

number of vertices in a non-empty cell to 0(1), we would have to use 0(n ) cells— 

bringing the running time up to 0(n ). 

■ approximately (1/rc) nk- 

Figure 6.1: Cycles have highly non-uniform vertex distribution 

Finally, although we can use distance cut-offs for drawings in higher-dimensional spaces, 

we can only do so efficiently if the vertex distribution is approximately uniform in the 

space. In any space, distance cut-offs only give us an efficient procedure if the drawing 

occupies 0(n) grid cells and the average number of vertices in each non-empty cell is 

0(1). 

6.2.2. Centripetal Repulsion 

An alternative approach to approximating the vertex-vertex repulsion forces is to replace 

them by a repulsion from the centroid of the drawing. As Coleman and Parker point out, 

centripetal repulsion can sometimes work as a substitute for vertex-vertex repulsion. 

Our notion of centripetal repulsion is slightly but significantly different from that of 

Coleman and Parker. We see centripetal repulsion as an extreme case of monopole 

approximation—that is, we consider a vertex's interaction with the n-1 other vertices as 

if the latter were consolidated into a single large vertex at their centroid.   Hence, we 



modify Coleman and Parker's approach in two ways. First, vertices experience repulsion 

from the centroid of the n-1 other vertices, rather than from the centroid of all n vertices 

in the drawing. Second, the repulsion force is mutual—that is, the centroids are also 

repelled by the vertices. This latter modification ensures that the sum of all repulsion 

force vectors in the drawing always cancels out, and hence that the centroid of the 

drawing will not drift. Like distance cut-offs, centripetal repulsion generalizes to 
drawings in higher dimensional spaces. 

Centripetal repulsion has several immediate advantages over distance cut-offs. The time 

necessary to compute all of the centripetal repulsion forces is 6(n) regardless of the 

vertex distribution, and there is no need to maintain an auxiliary grid data structure. 

Centripetal repulsion does not suffer from the discontinuities of distance cut-offs; in fact, 

the further a vertex is from the centroid of its neighbors, the more accurate the 

approximation. Also, for drawings in higher dimensional spaces, the cost of computing 

centripetal repulsion only increases linearly with the number of dimensions. Indeed, it is 

a more elegant model, both in concept and in the implementation. 

Unfortunately, its inaccuracy can be far more severe than that of distance cut-offs. Let us 

consider the 15-vertex binary tree drawn optimally in Figure 6.2. Using centripetal 

repulsion, we obtain the bizarre drawing in Figure 6.3. Because vertices don't repel each 

other directly, it is even possible for them to be assigned to identical coordinates. A 

smaller but still significant problem with centripetal repulsion is that it distorts the 
drawing near its centroid. 

@r^ 

Figure 6.2: Optimal Drawing of Tree 



Figure 6.3: Same Tree Drawn using Centripetal Repulsion 

We might address this problem by combining distance cut-offs with centripetal repulsion, 

but this approach would be messy. It would also suffer from the problems of both 

approaches—for example, degradation in speed when the vertex distribution is not close 

to uniform, and distortion near the centroid. Instead, we turn to the many-body 

simulation literature for a better solution. 

Interestingly, the two approaches we have discussed, distance cut-offs and centripetal 

repulsion, demonstrate the two distinct purposes of the vertex-vertex repulsion force. 

Distance cut-offs focus only on the short-range repulsion for avoiding overlap, while 

centripetal repulsion helps make the vertex distribution more uniform. As we will see, 

we can accomplish both of these goals by combining our distinction between short- and 

long-range repulsion with an efficient tree-code. 

6.3. Approximating Vertex-Vertex Repulsion Forces in 6(n log n) Time 

The problem of computing the pair-wise interactions among a large collection of particles 

is a familiar one to physicists. Indeed, their methods for approximating gravitational and 

electrostatic forces are directly relevant to our problem. 

Two popular procedures to compute this approximation are Greengard and Rokhlin's Fast 

Multipole Method (FMM) [GR87] and the Barnes-Hut algorithm [BH86]. Both rely on 

partitioning the set of particles hierarchically into a tree of cells. Barnes-Hut replaces 

most particle-particle interactions with particle-cell interactions, while FMM computes a 

series of cell-cell interactions. Although worst-case running-time of FMM is 

asymptotically better than that of Barnes-Hut—6(n) versus 6(n log n)—it has much 

more overhead and is also more complicated to implement. The performance and 

accuracy of Barnes-Hut are more than adequate for our purposes. 

We now describe how the Barnes-Hut algorithm works for particles in two dimensions. 

The algorithm consists of two phases. In the first, we partition the drawing space by 

creating a quad-tree of rectangular cells.   In the second, we traverse the quad-tree to 



approximate the net force acting on each particle. The algorithm generalizes to spaces of 

higher dimension, and is commonly applied to problems in three dimensions. 

6.3.1. Building the Quad-Tree 

In the first phase, we insert all of the particles into a quad-tree. A quad-tree is a 

hierarchical partitioning of a rectangle, where each internal node of the tree represents a 

rectangle that has been split into four congruent subrectangles (i.e. bisected horizontally 

and vertically) and each leaf is an undivided rectangle. We refer to both internal nodes 
and leaves of the quad-tree as cells. 

We begin with a single empty cell that represents the bounding rectangle of the particles. 

If we do not already know the bounding rectangle, we can compute it in 6(n) time, where 
n is the number of particles. 

We then insert the particles into the quad-tree sequentially. When we insert a particle, we 

begin at the root of the quad-tree. We increment the number of particles stored in that 

cell by one, and also update that cell's centroid. If the cell was empty, then its centroid is 

the position of the inserted particle; otherwise, we take a weighted average of the 

previous centroid and the new particle's position. Now there are three cases. If the cell 

was an empty leaf, then we are done with the insertion. If the cell is an internal node, we 

recursively insert the particle into the subcell corresponding to the rectangle that contains 

the particle. If the cell was a leaf that already had a particle in it, then we make the cell an 

internal node, splitting it into four subcells. We then recursively insert both of the cell's 
particles into the appropriate subcells. 

Figure 6.4 illustrates how we partition the bounding rectangle of the particles into cells 

such that each cell contains at most one particle. Figure 6.5 shows a quad-tree that 

represents this partitioning. The children of a cell represent, in order, the northwest, 
northeast, southwest, and southeast quadrants of that cell. 

Our insertion procedure maps each particle to a unique leaf in the quad-tree. There are 

also empty leaves in the tree—possibly as many as three for each internal node of the tree. 

In total, the space requirement for the quad-tree is 0(n). 

The time required to create the quad-tree depends on its height. Inserting a particle 

requires time proportional the distance from the root to the leaf that contains that particle. 



We note that, even if a subsequent insertion moves the particle further down the tree, the 

total time spent on inserting that particle is still proportional to its ultimate distance from 

the root. Hence, the total time spent on creating the quad-tree is proportional to the sum 

of the heights of its leaves. 
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Figure 6.4: Partitioning the Bounding Rectangle into Cells 

Figure 6.5: A Quad-Tree Representing the Partitioning 

Clearly, the height of the quad-tree has a lower bound of &(log n), giving us a 

corresponding lower bound of Q(n log n) for creating the tree. We could, however, 

have a quad-tree of arbitrary height h, and such a tree would require 6(nh) time to create. 

Such a highly imbalanced tree, however, imply that the smallest distance between two 

particles was 0(2"hs), where S is the length of the longer side of the bounding rectangle 

of the particles. We are not, however, dealing with an arbitrary distribution of particles in 

space. Because we are dealing with graph drawing, we can reasonably assume that there 



is a constant lower bound on the smallest distance between particles. We can also assume 

that s is O(n), the bounding case being a path of n vertices drawn along a straight line. 

Hence, each leaf has an area that is at least Q(1/n) fraction of the area of the bounding 

rectangle. This lower bound implies that the height of the quad-tree is 0(log n), making 

the time to create it 6(n log n). 

6.3.2. Computing the Force on Each Particle 

The performance gain in the Barnes-Hut algorithm comes from computing the force 

exerted on a particle by other far-away particles with a monopole approximation—that is, 

treating collections of particles as if they were clustered at their centroids. We do have to 

take care, however, not to make gross errors using this monopole approximation. 

The procedure for computing the force acting on a particle works as follows. We first 

find the leaf cell of the quad-tree associated with that particle. We then compute the force 

exerted by each of that cell's siblings on the particle. When then take the leafs parent in 

the tree and compute the force exerted by each of the parent's siblings on the particle. 

We do the same with the parent's parent, and so forth, until we reach the root. 

How we compute the force that a cell exerts on the particle depends on whether the leaf 

cell containing the particle is well separated from the cell. Barnes and Hut define this 

concept as follows: a particle and a cell are well separated if the ratio r/D is less than 6, 

where r is the length of a side of the cell, D is the distance between the particle and the 

centroid of the cell, and 6 is a fixed accuracy parameter between zero and one. We will 

discuss the choice of 6 in a moment. 

If a particle is well separated from a cell, then we compute the force exerted by the cell as 

if all of its particles were located at the centroid of the cell. Otherwise, we recursively 

compute the force exerted by each of the subcells of that cell on the particle. 

The reason for insisting that cells be well separated for the monopole approximation is 

that using centroids for cells that are not well separated can result in unbounded errors. 

Two particles that are very close to each other may end up in leaf cells that share a border 

but are nonetheless far apart from each other in the quad-tree. 

Barnes and Hut suggest setting 0 to be approximately 1. Salmon has shown the total 

number of force computations necessary is 0(Q* n log n) [Sa90], and that the errors in 



the force computation can be unbounded if 6 > d"%, where d is the number of dimensions 

of the space [SW94]. If d = 2, we must pick 9 < 0.707. We have had good results with 

0 = 0.7 is more than sufficient. In particular, our algorithm does not suffer from the 

discontinuities introduced by reorganizing the quadtree as vertices move in the drawing. 

We should note that the above error analysis assumes that the force law is an inverse- 

square law, as is the case in gravitation and electrostatics. In practice, we have found that 

the Barnes-Hut algorithm works even when the force law is inverse. In any case, our 

long-range repulsion force is inverse-square. 

We conclude this section with an example: we use the Barnes-Hut algorithm to compute 

the force acting on particle 1 in Figure 6.4. 

The siblings of the associated leaf cell are the leaf cell containing particle 8; the non-leaf 

cell containing particles 2, 3, and 4; and the leaf cell containing particle 10. The 

computation is trivial for the two siblings that are leaves; we just compute the ordinary 

particle-particle forces. 

The non-leaf sibling requires more work. Since it is not well separated from the leaf cell 

containing particle 1, we have to compute the forces that its children exert on particle 1. 

The non-empty children are the non-leaf cell containing particles 2 and 4, and the leaf 

cell containing particle 3. Again, the leaf cell computation is trivial, but again the non- 

leaf cell is not well-separated from the leaf containing particle 1. Hence, we look at its 

non-empty children, which are both leaves. 

Now, we look at the siblings of the parent of the leaf cell containing particle 1. These are 

the non-leaf cell containing particles 5, 6, 7, 9, and 11; the leaf cell containing particle 

14; and the non-leaf cell containing particles 12, 13, and 15. Finally, we see how the 

quad-tree helps: both of the non-leaf cells are well separated from the leaf cell containing 

particle 1. Hence, we compute the force that each exerts in constant time by treating each 

cell as if all of its particles were at its centroid. 

Since the parent of the parent of the leaf cell containing particle 1 is the root of the quad- 

tree, we are done. 



6.3.3. Applying Barnes-Hut to Compute Vertex-Vertex Repulsion Forces 

The vertex-vertex repulsion in our physical model considers a particle system like those 

that Barnes and Hut had in mind for their algorithm. Our force law does not correspond 

exactly to the physical laws of gravitation or electrostatics; nonetheless, the Barnes-Hut 
algorithm works very well to approximate it. 

We do however, make one minor modification. As we discussed in the context of 

centripetal repulsion, we would like the net force on the centroid of the drawing to be 

zero, since all of the forces should cancel each other out. Unfortunately, the Barnes-Hut 

algorithm does not make us such a guarantee. We address this problem much the way we 

did for centripetal repulsion: we make all forces mutual. In other words, a particle exerts 

a repulsion force on a cell equal in magnitude to the force that the cell exerts on the 

vertex. If the cell contains c vertices, then each of the vertices experiences 1/c of this 
force. 

6.4. Computing Vertex-Edge Repulsion Forces 

We could also modify the Barnes-Hut algorithm to compute vertex-edge repulsion. The 

modifications, however, would not be trivial: we would have to break up the line 

segments representing edges into sub-segments such that each leaf cell of the quad-tree 

would contain at most one sub-segment. The quad-tree would require a space 

proportional to the number of sub-segments, which could be somewhat larger than the 

number of edges. In addition, we would have to take more care with the force 

computation, since the three cases for vertex-edge repulsion are more complicated than 
the single law for vertex-vertex repulsion. 

A key difference, however, between vertex-vertex and vertex-edge repulsion is that the 

latter is a purely short-range force. Using Barnes-Hut is overkill, since we lose no 

accuracy by ignoring vertex-edge pairs that are far apart. In fact, we can use distance cut- 

offs, taking an approach based on Fruchterman and Reingold's grid variant. 

Like Fruchterman and Reingold, we partition the bounding rectangle of the drawing space 

into a grid of square cells such that the side of each cell is k and store in each cell a list of 

the vertices it contains. If the vertex distribution is sufficiently uniform, then the number 

of cells will be proportional to the number of vertices; otherwise, we can use a sparse 

matrix representation in which non-empty cells do not take up memory. 



Once we have computed the grid, we iterate over the edges, computing the repulsion 

force between it and the vertices that are near it. An edge may not be entirely contained 

in one cell, in which case we have to iterate over all of the cells it occupies. Indeed, the 

vertices we have to consider are precisely those that are either in the cells occupied by the 

edge or are in cells that border those occupied by the edge. If an edge is of length O(k), 

then it will occupy 0(1) cells. 

Unlike Fruchterman and Reingold, we do not have to contend with the inaccuracy caused 

by using distance cut-offs. Our vertex-edge repulsion force is short-range by design, so 

there is no inaccuracy. 

We do, however, suffer the same performance problems that they do if the vertex 

distribution is highly non-uniform. One heuristic to address this issue is to ignore vertex- 

edge repulsion in the early iterations. By doing so, we solve several problems. By the 

time we start computing vertex-edge repulsion, the vertex distribution corresponds 

roughly to what it will be in the final drawing. Waiting until later iterations to introduce 

vertex-edge repulsion also helps us avoid poor local minima. If, after a large number of 

iterations, there are still edges with large numbers of vertices within distance k of them, 

then we must resign ourselves to the fact that the drawing is dense and requires more 

work. In practice, the number of vertices within distance k of an edge is 0(1), making 

the time to compute vertex-edge repulsion forces 0(m). 



7. The Optimization Procedure 

So far, we have concerned ourselves only with the efficiency of computing the gradient. 

The other factor that determines performance is the number of gradient computations that 

our optimization procedure must perform before converging to a local minimum. 

As we discussed in Chapter 4, we can think of the graph drawing problem in terms of 

either a force model or an energy model. In the previous chapter, we opted for the 

former, describing how we encapsulate the aesthetic criteria with force laws. Now it 

proves convenient to imagine the sum of these force vectors as the negative gradient of an 

energy function that we are trying to minimize. We refer to this implicit energy function 
as the objective function. 

We restrict our attention to first-order continuous optimization procedures. Such 

procedures are iterative: on each iteration, they improve the drawing (which is a vector in 

R for two-dimensional drawings), translating it by some vector p e R2n. We break 

down the problem of computing this vector into two sub-problems: that of choosing a 

search direction—that is, the orientation of p—and that of determining the step size, the 
magnitude of p. 

The algorithms of Eades and of Fruchterman and Reingold use variations of the method 

of steepest descent. Accordingly, we first discuss this straightforward method for 

choosing the search direction. We then describe how to compute the search direction 

using the conjugate gradient method. Finally, we discuss the problem of computing the 
step size. 

7.1. The Method of Steepest Descent 

The method of steepest descent, also known as Euler's Method in the context of solving 

differential equations, uses the negative gradient as the search direction. In the context of 

force-directed graph drawing algorithms, moving along the negative gradient simply 

means moving each vertex in the direction of the net force exerted on it. 

Eades's optimization procedure uses the method of steepest descent as is. Fruchterman 

and Reingold start by computing the negative gradient, but then, instead of computing a 

step size, they truncate each vertex's components of the search direction independently in 



order to limit the maximum distance that a vertex can move on that iteration. They 

determine this maximum distance according to a "temperature" that is a decreasing 

function of the number of iterations performed thus far. 

The main selling point of the method of steepest descent is its simplicity. It allows us to 

compute a search direction with only one gradient computation. Moreover, as long as we 

take some care in choosing the step size and have sufficient numerical precision, the 

method of steepest descent will always converge to a local minimum, regardless of our 

starting point. 

Unfortunately, although the method of steepest descent does eventually converge to a 

local minimum, it may take a large number of iterations to do so. We can make this 

statement more formally for the case that the objective function is quadratic and positive 

definite—that is, its Hessian matrix of second derivatives is constant and has only 

positive eigenvalues. In this case, the method of steepest descent is only guaranteed to 

converge at a rate that is linear in the condition number of the Hessian, which is defined 

as the ratio between the smallest and largest of its eigenvalues. We refer the reader to 

Gill, Murray, and Wright [GMW81] for a thorough analysis of the convergence rate of 

the method of steepest descent. 

In our own case, the objective function is neither quadratic nor positive definite; 

nonetheless, the method of steepest descent slows down when the condition number of 

the Hessian is large. 

By always following the negative gradient, the method of steepest descent models the 

local behavior of the objective function as linear. Since non-degenerate linear functions 

do not even have local minima, this model is obviously a crude one. While the method of 

steepest descent performs reasonably well when we are far away from a local minimum— 

where the objective function behaves most linearly—its performance degrades rapidly as 

we approach the local minimum. 

Often, the method of steepest descent will find itself stuck in a "trough," a situation we 

depict in Figure 7.1. The little black arrows in the figure indicate the direction of the 

negative gradient, which each of the thick gray arrows indicates the progress on a single 

iteration.   Let us assume that we are using the maximum possible step size that will 



decrease the objective function. In that case, the method of steepest descent will bounce 

back and forth, making very slow progress. 

In order to do better than the method of steepest descent, we need a more sophisticated 

model of the objective function. 

Figure 7.1: Steepest Descent Makes Slow Progress in a Trough 

7.2. The Newton Direction 

The method of steepest descent is based on a linear model of the objective function—that 

is, a model in which the gradient at each iteration is treated as a constant. We now 

consider an approach that uses a quadratic model of the objective function. Most of the 

following discussion paraphrases that of Gill, Murray, and Wright [GMW81]. 

We construct this quadratic model by taking the first three terms of the Taylor series of 

the objective function about the current drawing. We denote the objective function by F, 

the current drawing by D, the gradient vector by F, and the Hessian matrix of second 

derivatives by F". The first three terms of the Taylor series give us the following 
expansion: 

F(D + p) B F(D) + F'(D) »p + Mp • F"(D)p, 

where p is the displacement from the current drawing. 

Since we are assuming that the Hessian F"(D) is constant, we will denote it by H. If H is 

positive definite, then there is a unique global minimum that we can obtain by 

minimizing the following quantity O with respect to p: 

<£(p) = F(D + p) - F(D) = F'(D) »p + Vip • (Hp) 



Finding the minimum of <I> is, in turn, equivalent to solving the linear system of 

equations: 

Hp=-F(D) 

The value of p that solves this linear system is called the Newton direction. 

We could solve this linear system of equations to obtain the Newton direction. 

Unfortunately, we would need 0(n ) time and space just to compute H, let alone to solve 

the system. What we would like is a faster technique that approximately follows the 

Newton direction without requiring us to compute H. 

7.3. The Conjugate Gradient Method 

In order to achieve the effect of following the Newton direction without actually 

computing H, we turn to the conjugate gradient method. The conjugate gradient method 

is an iterative technique that computes the Newton direction for a quadratic function 

whose Hessian is positive definite. We first discuss the conjugate gradient method for 

quadratic, positive definite functions and then generalize it to handle more general 

functions. 

We define a collection of linearly independent vectors po, Pu P&--- to be our search 

directions and define Pj to be the vector space spanned by po, Pi, Pa-- Pi- We will 

discuss how to compute these vectors in a moment. We also have a collection of vectors 

Xo, Xi, X&... that represent successive approximations to the location of the minimum of 

<E>. We define X\ to be the vector that minimizes <E> over the manifold Pj.  Hence, for a 
On 

problem of 2n independent variables, X^n is the true minimum of O, since P2n = R • 

Finally, we define a sequence of gradients go, gu flfa... such that g\ - V <£(X/). 

By choosing the search directions to be mutually conjugate with respect to H—that is, so 

that they satisfy the condition V i, j, such that i * j: p; • (Hpy) = 0—we obtain the 

simplification: X/+* = X\ + a\ p/, where Of/ = - (flT/ • P/) / (p/ • (Hp/)). Instead of using H 

to compute a/, we can, as we will discuss in section 7.5, find it with a line search. 

The remaining question is how we choose the search directions. We set Po to be the 

direction of steepest descent. We obtain the remaining vectors as follows: 

Pk = -gk + (lig/fll / \\gk-i\\)2Pk-i 



A proof that these search directions are mutually conjugate can be found in Gill, Murray, 
and Wright's text [GMW81]. 

Assuming that the objective function is quadratic, its Hessian is positive definite, and the 

line search is exact, then we obtain an exact minimum in at most 2n conjugate gradient 
iterations. 

To get an intuition for how the conjugate gradient method outperforms steepest descent, 

let us return to the example in Figure 7.1. As we can see from the picture, llgrN / ll^oll is 

approximately 1. For simplicity, we will assume that the magnitudes of both gradients 

are identical. In that case, the second iteration, rather than following the negative 

gradient gh uses as its search direction (shown with a thick black line) Pi = - (g0 + gi). 

This summation, as we can see in Figure 7.2 cancels out the vertical oscillation that slows 

down steepest descent, allowing us to escape from the trough in only two iterations. 

While this example is unrealistically simple, it does provide an intuition for why the 

conjugate gradient method significantly outperforms steepest descent. 

For a quadratic, positive definite objective function, the conjugate gradient method has 

rate of convergence proportional to the square root of the condition number of the 

Hessian (as compared to steepest descent, which is linear). 

Pi = -(9o+9i) 

/*       /       f       /*       * 

Figure 7.2: The Conjugate Gradient Method Escaping a Trough 

7.4. The Conjugate Gradient Method with Restarts 

Unfortunately, some assumptions that we made about the objective function do not, in 

fact, hold. The objective function is not quadratic; the Hessian may not be positive 

definite; and an exact line search is impractical. Moreover, we have no desire to perform 

2n conjugate gradient iterations, since 2n conjugate gradient iterations would require 

e(nm + n2 log n) time. 



In light of these issues, we modify the conjugate gradient method by restarting it 

whenever the search direction is not a descent direction, i.e. its dot product with the 

gradient of the objective function is non-negative. 

While this heuristic undermines theoretical claims about our method, experiments show it 

to be a significant improvement over the method of steepest descent. We will present an 

empirical comparison between the conjugate gradient method with restarts and the 

method of steepest descent in Chapter 11. 

7.5. Computing the Step Size 

Whatever our method for choosing the search direction, we need a procedure that 

computes an admissible step size. We refer to such a procedure as a line search, since it 

searched along the line defined by the search direction. We define a step size to be 

admissible if it satisfies the following criteria: 

1) It is positive. 

2) It causes the objective function to decrease. 

3) The angle between the new gradient (after moving the drawing) and the old gradient 

has an angle greater than or equal to some constant y, where 0 < y < n 12. 

The first criterion simply enforces the search direction; we are interested in moving along 

the search direction, not opposite to it. The second criterion prevents us from taking steps 

that are too large, and ensures that each iteration of the optimization procedure will 

actually improve the drawing. Finally, the third criterion prevents us from taking steps 

that are too small. The value of y determines the accuracy of the line search: a larger 

value corresponds to a more accurate search. We set y = cos" (0.5) in our 

implementation. As long as the step size satisfies these three properties, then we will 

converge to a local minimum. 

To compute an admissible step size, we first bracket the step size—that is, determine a 

finite interval that contains an admissible step size. Since we already have zero as the 

lower bound of the interval, we only have to compute an upper bound. We make a guess, 

and then keep doubling it until either it is an admissible step size or the dot product 

between the gradient obtained after using it as a step size and the old gradient is negative. 



In the latter case, we have to search the interval to find an admissible step size; we can do 

so using bisection, polynomial interpolation, or other line search techniques. 

An exact line search finds a stationary point along the search direction—that is, a point 

where the gradient is orthogonal to the present one. The benefits of using an exact line 

search, however, do not justify the amount of computation necessary to find the stationary 

point. In fact, we are ultimately limited by the floating point precision of the machine. 

But it is not even practical to perform a particularly accurate line search, since our overall 

computational cost is proportional to the number of gradient computations performed per 
line search. 

Eades takes the simplest approach: he uses a fixed step size. Unfortunately, there is no 

guarantee that this step size is admissible. In particular, if it is too large, the optimization 
may oscillate and never converge to a local minimum. 

Our experiments showed, however, that a fixed step size often does very well in practice. 

In fact, most of our sophisticated line search approaches slowed us down by increasing 

the number of gradient computations per iteration. Determined to keep this number 

small, we decided to compute the step size adaptively. 

When we start our computation, we initialize the step size to be one. On each iteration, 

we check if the current step size is admissible. If it is, we use it. If it is too small—that 

is, if the angle between the gradient after taking the step and the current gradient is closer 

to zero that an experimentally determined constant—then we keep doubling it until it is 

not. We have thereby bracketed an admissible point. We then use bisection (we could 

just have easily used quadratic interpolation) to find an admissible point on this interval. 

The step size that we compute becomes the current step size, which we use as our first 

guess on the following iteration. This adaptive procedure does a good job of staying 

close to the optimal step size while performing a number of gradient computations that is 

proportional to the logarithm of the ratio between the previous step size and the current 
one. 



8. Making the Gradient Time-Dependent 

Thus far, we have treated the graph drawing problem as consisting of three somewhat 

independent subproblems: defining the force laws that quantify the aesthetic criteria, 

computing the forces so as to obtain the negative gradient of an implicit energy function, 

and performing numerical optimization to obtain a local minimum with respect to this 

energy function. 

In this chapter, we consider strategies that make the gradient time-dependent—that is, 

where we change the force laws from iteration to iteration. We use this time-dependence 

in three ways. The first is to make the gradient smoother in the earlier iterations in order 

to improve performance and avoid poor local minima. The second is to incorporate 

constraints into our model by converting them into exterior penalties. The third is to 

introduce additional degrees of freedom so that the drawing space has more maneuvering 

room—e.g., turning a two-dimensional problem into a three-dimensional one—and then 

to treat the original problem as a constrained problem in the larger space. 

8.1. Making the Gradient Smoother in the Early Iterations 

The performance of a first-order optimization procedure, such as steepest descent or the 

conjugate gradient method, reflects the smoothness of the objective function. The less 

that the objective function looks like a linear or quadratic function, the longer it takes for 

an optimization procedure to converge. By making the force laws time-dependent, we 

can mitigate the effects of the non-smoothness of our energy function. 

The spring forces, as long as we model them with a low-order polynomial, tend to be 

fairly well behaved. If we were to use a linear spring force law with a rest length of zero, 

then the spring energies (that is, their contributions to the objective function) would all be 

quadratic functions. Indeed, if we only had to contend with spring forces, we would 

require relatively few iterations for the optimization procedure. Unfortunately, it does not 

seem possible for us to do so without "densifying" the graph as Kamada and Kawai do in 

their model, associating a spring with every pair of vertices. Hence, we are stuck with the 

highly non-linear repulsion forces. 

The vertex-vertex repulsion forces are poorly behaved both when the vertices are very 

near each other and when they are far away.   When they are near each other, the 



magnitude of the repulsion force abruptly approaches infinity. When they are far apart, 

the magnitude very slowly approaches zero. Both of these behaviors impede the 

optimization procedure, but we can address them by making the gradient time-dependent. 

8.1.1. Capping Spikes 

Assigning two vertices to identical coordinates drives the magnitude of their repulsion 

force to infinity. We, like Fruchterman and Reingold, handle the singularity arising from 

this situation by randomly moving the vertices a small distance away from each other. 

This perturbation strategy, however, ignores a larger issue—namely, that the objective 

function behaves poorly in the neighborhood of the singularity. We refer to this region of 

poor behavior as a spike. In the vicinity of a spike, the term of the gradient associated 

with the spike dominates the overall gradient and thus causes the Hessian to be ill- 

conditioned. Regardless of how we choose our search direction, we will find that the step 

size becomes very small in the vicinity of a spike, since the optimization procedure must 

slowly maneuver around it. Both linear and quadratic models of the objective function 
are very inaccurate in the vicinity of a spike. 

Spikes can also trap us in poor local minima. Because the objective function increases 

dramatically in the vicinity of a spike, the spike can create a local minimum that could 

easily be avoided if the optimization algorithm were able to jump over the spike. 

Fruchterman and Reingold do not explicitly discuss the problems caused by spikes; 

nonetheless, their "cooling schedule" addresses them implicitly. Their algorithm limits 

the maximum vertex displacement per iteration as a linearly decreasing function of time, 

which they call the "temperature" of the drawing. The effect of their approach is similar 

to that of placing a time-dependent maximum on each vertex's component of the 
gradient. 

We take a slightly different approach. Rather than compute the gradient and then truncate 

each of its components, we truncate each repulsion term's contribution to the gradient. 

We enforce a maximum magnitude on each vertex-vertex and vertex-edge repulsion force 

vector, without changing any of their directions, and make this maximum magnitude an 

increasing function of the number of iterations. By capping the magnitudes of the 

repulsion terms, we prevent spikes from interfering with the early iterations and possibly 
trapping us in poor local minima. 



A simple way to cap the magnitudes is to make the maximum magnitude proportional to 

the number of iterations. This strategy is analogous to Fruchterman and Reingold's 

temperature scheme. Alternatively, we could start off with a small cap and increase it as 

the magnitude of the overall gradient decreases. Both strategies, like Fruchterman and 

Reingold's temperature scheme, require experimentation to tune the constants. 

We still have to use perturbation to break symmetry if two vertices have identical 

coordinates or if a vertex and an edge are collinear, but at least we don't have to contend 

with an ill-conditioned Hessian. 

8.1.2. Strengthening the Long-Range Vertex-Vertex Repulsion Forces 

Now that we have dealt with spikes, we address the other problem caused by vertex- 

vertex repulsion forces: their slow convergence to zero as the vertices move far apart. 

Vertex-edge forces do not have this problem, because they are purely short-range. 

In our discussion of the force model, we argued that the long-range vertex-vertex 

repulsion forces should be weak to avoid creating pockets of excessive local density in 

the drawing. Now, we are saying that weak long-range forces slow down the 

optimization process. 

We reconcile these two issues by making the long-range forces stronger in the early 

iterations and weaker in the later ones. The early iterations will produce a drawing with 

the right shape, but perhaps with too much local density. The later iterations, by 

weakening the long-range repulsion forces, will spread out the pockets of local density. 

As with the capping of spikes, we need to tune the weakening of long-range forces 

experimentally. We implement the weakening by using a convex combination of the 

strong and weak long-range repulsion laws. In other words, we make a linear 

combination, weighting the strong force by a and the weak force by 1 - a, where a is 1 

on the first iteration and slowly decreases to 0 as a function of the number of iterations. 

Again, we determine the rate of decrease experimentally. 

8.2. Using Exterior Penalties to Incorporate Constraints 

Most of the force-directed algorithms treat graph drawing as an unconstrained 

optimization problem.   At best, they allow the user to assign relative weights to the 



different forces. Little work has addressed the problem of general graph drawing with 

constraints. A few approaches allow the user to fix the positions of particular vertices. 

The most relevant work, that of He and Mariott [HM96], allows only linear equalities and 
inequalties as constraints. 

The possibility of specifying constraints makes a graph drawing algorithm more flexible. 

A user might introduce constraints to anchor certain vertices at fixed positions or to 

restrict them to particular regions of the drawing space. Constraints can also control the 

positions of vertices relative to one other, thus portraying clusters of vertices or particular 

relationships among the constrained vertices. 

We incorporate constraints into our model by using the method of exterior penalties. 

This method requires, for each constraint, an efficient procedure to measure the distance 
On 

(in R ) from an infeasible drawing to the nearest drawing that satisfies the constraint. 

We use these procedures to add penalty terms to the objective function that increase over 

time, so that eventually all descent directions will point towards the feasible space. 

Several caveats are in order. 

First, the method of exterior penalties is not applicable to infeasible problems—that is, 

problems for which no solution satisfies all of the constraints. These problems are better 

addressed by a two-phase approach that first chooses a subset of constraints to be 

satisfied and then solves the resulting constrained optimization problem. 

Second, the method can break down when the feasible space is disconnected. A one- 

dimensional example illustrates this possibility. Let us imagine that we have a single 

variable X, a trivial objective function that is always equal to 1, and two constraints. The 

first constraint is that x G [1, 2] u [3, 4]; the second is that x G [-2, -1] u [3, 4]. Let us 

imagine that we start with the infeasible point x = 0. The penalty term for the first 

constraint will point us in the positive direction, towards the nearest point that satisfies 

the constraint, X = 1. The penalty term for the second constraint, however, will point us 

towards X = -1. Because these two terms will cancel out, we will never find the feasible 

space, which is x e [3, 4]. 

Third, the magnitudes of the penalty terms should not be too large relative to the 

magnitude of the gradient.  They should be just large enough to force the optimization 



procedure towards the feasible space. If we make the penalties too large, then they will 

create the problems of spikes that we discussed earlier. Often, we do not have to make 

the penalties very large for the optimization procedure to discover the feasible space. 

We have had good results with quadratic penalty terms. For each constraint, we make the 

corresponding penalty term the square of the vector difference between the current 

drawing and the closest drawing that satisfies the constraint. We call the negative 

gradient of the sum of all such penalties the penalty vector, and we add a multiple of this 

penalty vector to the negative gradient that we compute from the force laws. 

Let us denote the penalty vector by p and the negative gradient by -g. Let 9 be the angle 

between p and -flf, i.e. COS 9 = p • (-flf) / llpll ll-flfll. Then, if COS 9 is positive, ignoring 

p and following the negative gradient will bring us closer to the feasible space, while, if 

COS 9 is negative, doing so will take us away from the feasible space. The more negative 

the cosine, the greater we need to make our coefficient for p. 

In our implementation, this coefficient is max(e, e - cos 9) * max(1, (ll-flfll / llpll)), 

where e = 10"8. The first factor uses the cosine to weight the penalty vector, while the 

second factor normalizes the negative gradient and penalty vectors. This formula is 

surely not optimal, but it works well in practice and is simple to compute. 

We refer the reader to Gill, Murray, and Wright [GMW81] for further discussion of the 

method of exterior penalties and related numerical optimization methods. 

8.3. Introducing Additional Degrees of Freedom 

Our last application of scheduling is to take an unconstrained graph drawing problem and 

turn it into a constrained problem in a larger drawing space, which we solve using 

exterior penalties. We transform the problem in order to take advantage of the 

maneuvering room in the larger space. 

Before describing this technique, let us consider an example of what happens when the 

drawing space has only one dimension rather than two. We take a simple undirected 

graph: three vertices {v-i, v2, v3} and two edges {ei = (v1f v2), e2 = (v2, v3)}. 

The drawing on the left in Figure 8.1 shows the globally optimal drawing. Unfortunately, 

a local optimization procedure will only converge to this optimum (or its mirror image) if 



V2 is between Vi and v3 in the initial drawing. If the initial placement is random, this 

happy event occurs with probability 1/3. With probability 2/3, a local optimization 

procedure will converge to the drawing on the right (or one of the three other equivalent 
drawings), which is locally optimal but lousy. 

© © © Q-® © 
Figure 8.1: Local optima for a 3-vertex graph in one dimension. 

The drawing on the left is globally optimal. 

While one-dimensional graph drawing may seem a contrived problem, it arises in code 

and data layout applications [Be94]. In any case, using local optimization methods in one 

dimension is clearly a poor strategy. A much better approach is to move the problem to a 

two-dimensional space and then somehow squash it back onto one dimension. In two 

dimensions, the graph above would, with probability 1, be drawn as some rotation of the 
global optimum. 

How do we squash the problem back onto its original drawing space? In this example, 

we can introduce the constraint yt = 0 for each vertex Vj. We then apply the method of 
exterior penalties to solve the constrained problem. 

We can use this same strategy to convert an unconstrained two-dimensional problem into 

a constrained three-dimensional problem. Here, the constraint is Z-, = 0 for each vertex Vj, 

and the corresponding penalty terms are Z*. By lifting the problem from two dimensions 

to three or more dimensions, we can often "untwist" drawings that would otherwise 
converge to poor local minima. 



9. Vertex Size and Shape 

Thus far, we have used a force model in which vertices are represented by dimensionless 

points. While doing so has simplified our discussion thus far, we must take vertex size 

and shape into consideration in order to make our graph drawing algorithm relevant to 

practical problems. 

In this chapter, we adapt the force laws to take into account vertex shape and size. We 

require that the vertex shapes are convex; if they are not, we can satisfy this requirement 

by replacing a vertex shape with its convex hull. We also require, for the sake of 

efficiency, access to a constant-time test that determines if and where a single line 

segment intersects the boundary of a given vertex. Such a test is straightforward when 

the vertices are drawn as rectangles, as is most commonly the case. 

Vertex size and shape affect our force laws for edge springs, vertex-vertex repulsion, and 

vertex-edge repulsion. When vertices are large, we need to modify our force laws to 

make room for them. The modifications should be primarily short-range, since the size 

and shape of a vertex rapidly decrease in importance as we move away from it. 

9.1. Vertex Radii 
It is convenient to always measure the distance between two vertices by using the line 

segment connecting the vertex centers. We have to consider, however, that the distance 

between the vertex boundaries depends on the size and shape of the vertices, as well as 

the orientation of the line segment. In particular, we have to subtract out the "radius" of 

each vertex—that is, the distance from the center of each vertex to the point at which the 

line segment intersects the vertex boundary. We refer to these distances as the radii of 

the vertices with respect to the line segment connecting them. When there is no 

ambiguity, we simply refer to them as the vertex radii. 

Figure 9.1 shows how we measure the radii of vertices Vi and V2 when we are computing 

the distance between them. We first draw the line segment connecting the vertex centers, 

and then we compute the distances between the centers and the intersections of this line 

segment with the vertex boundaries to obtain the vertex radii i"i and X2. 



Figure 9.1: The radii of rectangular vertices v, and v2 

with respect to the line segment connecting them. 

9.2. Adapting the Force Laws to Consider Vertex Radii 

In order to take vertex radius into account, we make several changes to the force laws. 

First, we give the edge springs a non-zero rest length that reflects the radii of the 

endpoints with respect to the edge. Then, we modify the vertex-vertex repulsion law in 

order to make the boundary-to-boundary rest length of an edge equal to k. Finally, we 

make a similar modification to the vertex-edge repulsion force. 

9.2.1. Increasing the Rest Length of Edge Springs 

In the force model we have described thus far, the springs have a rest length of zero—that 

is, they always try to pull their endpoints closer together. While this works well for 

dimensionless vertices, it does not make as much sense when vertices have nontrivial size 
and shape. 

In order to reflect vertex size and shape, we make the rest length of an edge spring equal 

to the sum of the endpoint radii. Accordingly, the spring pushes the endpoints away from 

each other when the endpoints overlap, since the distance between the centers is less than 

the sum of the radii. When the endpoints are mutually tangent, the spring exerts no force 

on them. Finally, if the endpoints are further apart than the sum of their radii, then the 
spring pulls them towards each other. 

For an edge connecting dimensionless vertices Vj and Vj , our formula for the magnitude 

of the spring force was \\fspring (Vj, Vj)ll s llx, - x/ll2 / k. 



If the radii of Vi and V2 with respect to the line segment connecting them are r-\ and r2, 

then we make the magnitude \\fspring (Vj, Vj)ll = (llx/ - X/ll - (n + r2))2 / (k + (n + r2)). 

The direction of the spring force (pulling the vertices towards or pushing them away from 

each other) depends on whether dist(Vj, Vj) is greater than or less than 1*1 + r2. A 

reminder: we measure llx/ - xji\ as the length of the line segment connecting the vertex 

centers. 

9.2.2. Modifying the Vertex-Vertex Repulsion Law 

We had set up our edge spring and vertex-vertex repulsion laws so that an edge would 

have a rest length of k. Now that we have modified the spring law to consider the vertex 

radii, we need to make a corresponding change to the vertex-vertex repulsion law. 

For dimensionless vertices, we had the following formula for the magnitude of the 

repulsion force: Ufrepulsion (Vj, Vj)ll = K / llx/ - X/ll. 

If the radii of V1 and V2 with respect to the line segment connecting them are i"i and r2, 

then we replace this formula with \\frepulsion (Vj, Vj)ll = (k + (n + r2))2 / llx/ - Xyll. 

As we discussed earlier, using a single law for vertex-vertex repulsion can cause 

excessive local density. If we distinguish between strong short-range and long-range 

repulsion, then the above law is for short-range repulsion, and the modification to the 

inverse-square long-range repulsion law is analogous. 

9.2.3. Modifying the Vertex-Vertex Repulsion Law 

Finally, we need to modify the vertex-edge repulsion law to reflect the vertex size and 

shape. 

In our model for dimensionless vertices, we made the magnitude of the vertex-edge 

repulsion force \\frepulsion (Vj, ej)ll = cw({\f I x) - k) when x, the distance between 

vertex Vj and edge ej, is less than k. 

Applying the same idea we used for vertex-vertex repulsion, we replace k by k + r, where 

r is the radius of Vj with respect to the shortest line segment connecting it to ej. 

Accordingly, the new magnitude is \\frepulsion (V|, ej)ll = cve(((k+r)2 / x) - (k+r)) when x, 

the distance between the center of vertex Vj and edge ej, is less than k + r. 



9.3. Adapting the Procedure to Compute the Forces 

Since we are modifying the force laws to take vertex size and shape into account, we also 

have to make changes to the procedure for computing the forces. In particular, we have 

to modify the Barnes-Hut algorithm that we use for computing vertex-vertex repulsion 

and the distance cut-off procedure that we use for computing vertex-edge repulsion. We 

will assume for simplicity that all vertices are rectangles, but our methods apply as long 

as the vertices conform to simple, parameterized class of shapes, such as ellipses. 

The change we make to the Barnes-Hut procedure is that we store in each cell the average 

shape of a vertex. Since our vertices are rectangles, we simply maintain the average 

width and height of the vertices in each cell. Then, when we approximate the repulsion 

that the cell exerts with its centroid, we use this width and height in our computation. 

For our computation of vertex-edge repulsion, we have to modify the assignment of 

vertices to grid cells to take radius into account. We store each vertex in every grid cell 

that it intersects. Then, when we iterate for each edge through the grid cells it occupies 

(including all of the grid cells occupied by the endpoints) and the neighbors of those cells, 

we will find all vertices within the short range of the edge. 



10. Qualitative Results: A Gallery of Examples 

Until now, we have focused on the details of our algorithm. Now, we look at the 

performance of an implementation that we have written in Java. In this chapter, we take a 

qualitative perspective: we present a variety of drawing produced by our implementation 

and discuss the strengths and weakness of the algorithm on different classes of graphs in 

intuitive terms. In Chapter 11, we will take a more quantitative perspective. 

Our presentation of drawings is in order of increasing density. We start from trees, the 

sparsest of graphs, and work our way up to complete graphs. We only consider graphs 

that are connected, since it is not difficult to find the connected components of a graph 

and draw them separately. 

10.1. Trees 

Trees are the sparsest of connected graphs: a tree of n vertices has m = n - 1 edges. 

Tree drawing is a well studied problem, and there are good, special-purpose algorithms 

for drawing both rooted (directed) and unrooted trees [RT81, Ea92]. 

It is surprising, perhaps, that force-directed algorithms perform very badly on trees. In 

fact, trees are some of the worst inputs for graph drawing algorithms based on numerical 

optimization. Trees have two qualities that confound force-directed algorithms. The first 

is that they have countless poor local minima that result from swapping the positions of 

subgraphs so that they cross. The second is that, because trees are so sparse, the spring 

forces do not particularly restrict the movement of vertices; instead, it is the repulsion 

forces that largely determine the placement of vertices. Because the repulsion forces are 

far less smooth than the spring forces, they slow down any first-order numerical 

optimization, such as steepest descent of the conjugate gradient method. 

Nonetheless, we have two reasons to test our algorithm on trees. The first is 

completeness: since our algorithm applies to all connected graphs, it behooves us to test it 

on as wide a range of input graphs as possible. The other reason is that we can compare 

the performance of our algorithm with that of other force-directed approaches, and 

thereby see the relative strengths and weakness of our techniques. 



The drawings that our algorithm produces are similar to those produced by radial tree 

drawing algorithms, only that ours tend to distribute vertices more evenly throughout the 

drawing area. Unlike the radial drawing algorithms, however, we do not always produce 

crossing-free drawings of trees. In general, drawings of trees that have edge crossings 
correspond to poor local minima. 

We did experiment with modifying the force laws to produce more traditional drawings 

of rooted trees (see the discussion of "eumorphous" drawings in Section 3.1.1), where all 

edges were directed towards the root and pointed upwards. Unfortunately, we found that 

the aesthetic principles for eumorphous drawings of trees were very different from those 

for general graphs. While our force-directed drawings aim to distribute vertices 

uniformly throughout the drawing space, traditional drawings of rooted trees tend to be 

much denser at the bottom, where the leaves are, than at the top, where the root is, and 
they are generally much wider that they are tall. 

Let us consider, for example, a complete binary tree of n = 2h-1 vertices. Our force- 

directed algorithm will produce a drawing that roughly occupies a square drawing area 

whose side is kVn. In contrast, a eumorphous drawing will have h layers and 2h"1 

leaves—roughly half of the vertices—occupying the lowest of the layers. In order for the 

height and width of the drawing area to be equal, the vertical separation between layers 

would have to be 2 " / h (roughly n / log n) times larger than the horizontal separation 
between vertices on the lowest layer. 

We experimented with various schemes involving constraints and modifications of the 

spring laws for directed edges, but none of them consistently produced satisfactory 
drawings of rooted trees. 

Given the difficulty that force-directed algorithms have drawing trees, we suspect that a 

general graph drawing algorithm should use a hybrid approach. First, it should compute 

the unique tree of biconnected components—that is, the maximal subgraphs that cannot 

be disconnected by the removal of a vertex. It should then use a specialized tree-drawing 

algorithm to arrange the centroids of these biconnected components. Finally, it should 

draw each component independently using a force-directed algorithm—with the centroids 

fixed according to the previous step. We discuss such an approach, as well as its pitfalls, 
in the section on future work. 



We now present a few examples of trees produced by our algorithm. 

Figure 10.1 shows a complete binary tree of 63 vertices. To produce this drawing, we 
used a three-dimensional drawing space with two-dimensional constraints, as described in 
section 8.3. Figure 10.2 shows an example of the many poor local minima that often 
result when we apply our algorithm directly on a two-dimensional drawing area. 
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Figure 10.1: Complete Binary Tree of 63 Vertices 
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Figure 10.2: Example of Bad Local Minimum 



Figure 10.3 shows a random tree of 100 vertices; here we can see clearly that the drawing 

is not radial, but rather that the vertices spread themselves out relatively uniformly 

throughout the drawing area. 
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Figure 10.3: Random Tree of 100 Vertices 

10.2. Planar Biconnected Graphs 

As we have discussed, the performance of force-directed algorithms suffers for trees, and 

in general for graphs that are not biconnected. We therefore turn our attention to 

biconnected graphs. We start with an important class of biconnected graphs: graphs that 
are biconnected and planar. 

Planar graphs are of particular theoretical and practical interest. Planar graphs, by 

definition, can be drawn in the plane without any edge crossings. Many classical results 

in graph theory pertain to planar graphs: Fary determined that a planar graph could be 

drawn without edge crossings using straight-line edges [Fa48]; Hopcroft and Tarjan 

determined how to both test the planarity of a graph and compute an embedding of it in 

linear time [HT74]; Tutte proposed a "barycenter" method for drawing planar graphs that 

was suggestive of the later force-directed approaches and that would always converge to a 

drawing without edge crossings [Tu60]. The practical significance of planar graphs 

comes from their ubiquity: maps are the face-duals of planar graphs; circuits laid out on a 

board cannot have edge crossings; roads and railroad tracks cannot arbitrarily cross each 
other; and so forth. 



A classic result of Euler is that a planar graph of n vertices has at most m < 3n - 6 edges 

[BM76]. Planar graphs are therefore quite sparse: the average degree of a vertex is at 

most six. 

In general, sparse graphs are harder for force-directed algorithms to draw than dense ones 

because the repulsion forces are not as smooth as the spring forces. Nonetheless, 

biconnected planar graphs are generally easier to draw than trees. The sparsest of 

biconnected planar graphs are cycles, where every vertex has a degree of two. Cycles, 

like trees, are susceptible to poor local minima because of their sparseness; these local 

minima generally result from the cycles getting tangled. At the other extreme, we have 

triangular meshes, where the average degree is almost six. These graphs, not surprisingly, 

are much easier for force-directed algorithms to draw. 

Regardless of the planarity of the graph, our algorithm does not attempt to avoid edge 

crossings. Similarly, our algorithm does not treat graphs of three-dimensional objects in 

any special way—that is, the algorithm does not take into account the fact that their 

topologies correspond to those of three-dimensional objects. 

Figure 10.4 shows a drawing of a cycle of 100 vertices. In general, cycles are optimally 

drawn as regular polygons. Interestingly, they are drawn as such even when placed in a 

higher dimensional space—that is, they will occupy a planar slice of that space. 

r 
V 

p 

/ 

> 

\ 

V 

Figure 10.4: Cycle of 100 Vertices 



Force-directed algorithms work especially well for planar meshed. Figure 10.5 shows a 

triangular mesh of 465 vertices. Figure 10.6 shows a square mesh of 400 vertices. As 

with trees, using a third dimension allows the drawing to untwist itself out of tangles. 

Like cycles, planar meshes will be drawn as planar even when placed in a higher 
dimensional space. 

Figure 10.5: Triangular Mesh of 465 Vertices 

Figure 10.6: Square Mesh of 400 Vertices 

Figure 10.7 shows two drawings of a graph corresponding to the topology of a 

dodecahedron. Interestingly, both graphs drawings were produced in two dimensions. 

Neither is crossing-free, since a crossing-free drawing would require a high variance in 

edge length. The drawing on the left appears to be three-dimensional. 



Figure 10.7: 2 Drawings of a Dodecahedron 

Figure 10.8 shows a drawings of a triangular mesh of 210 vertices and a square mesh of 

144 vertices constrained to occupy the surface of a three-dimensional sphere. This 

constraint is interesting for two reasons. First, it suggests applications such as 

cartography, where conforming the shape of the drawing surface is a critical part of the 

overall drawing problem. Second, the constraint is non-linear, and hence is not addressed 

by any of the published work on force-directed graph drawing. 

Figure 10.8: Planar Meshes Constrained to the Surface of a Sphere 

10.3. Sparse Non-Planar Graphs 

Although planarity arises naturally in graphs corresponding to concrete physical networks 

such as roads or railway systems, we can hardly expect abstract networks to be planar. 

Often, our graphs do not represent physical networks, but rather they represent 

relationships in an organization or interactions in a complex system. We may be able to 

assume that such graphs are sparse, but not that they are planar. 



Our algorithm does not take edge crossings into account; rather, its performance depends 

mostly on the sparseness or density of the input graph. Of course, given a non-planar 

input graph, it will always produce a drawing that has edge crossings. In general, the 

denser the graph, the easier and faster it is for the numerical optimization procedure to 

converge to a local minimum. On the other hand, denser graphs often result in less 

legible drawings than sparser ones, because the edges clutter the drawing. 

We have chosen examples for this section from two families of non-planar graphs where 
m is 0(n). 

A cycle of n/c C-cliques (i.e. copies of Kc) is non-planar if c > 5 and has an average 

degree of roughly C-1. Figure 10.9 shows a cycle of 20 KcS. 

Figure 10.9: Cycle of 20 KsS 

A torus is a non-planar graph constructed by taking a square mesh and connecting the top 

to the bottom and the left to the right. Every vertex in a torus has degree four. Figure 

10.10 shows a torus of 256 drawn in both two and three dimensions. The drawing on the 

left misleadingly appears to be three-dimensional, but the drawing on the right, which is 

in fact three-dimensional, best reveals the structure of the graph. 
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Figure 10.10: Torus of 256 Vertices in Two and Three Dimensions 

10.4. Dense Graphs 

Finally, we consider denser graphs where m is not 0(n). If m is 0(n log n), then the 

time necessary to compute the spring forces will be within a constant factor of the time 

necessary to compute the vertex-vertex repulsion forces using the Barnes-Hut procedure. 

If m is 6(n2), we have no reason to use the Barnes-Hut procedure: since we will require 

0(n2) time to compute the gradient, we may as well compute the repulsion forces exactly. 

In fact, we might even use Kamada and Kawai's algorithm, since we will already need 

0(n2) space to store the graph. 

While increasing the density of a graph beyond an average degree of 0(log n) increases 

the time necessary to compute the gradient, it does decrease the number of iterations 

necessary for convergence, since the spring forces are smoother than the repulsion forces, 

and the spring forces dominate the repulsion forces in dense graphs. 

Most drawings of dense graphs are too cluttered with edges to be useful. Some 

exceptions are hypercubes, complete bipartite graphs, and complete graphs, like those we 

show below. We doubt that many practical applications require drawings of dense 

graphs, but we include this section for completeness. 



A d-dimensional hypercube has 2d vertices, each of degree d. Figure 10.11 shows 

drawings of a 6-dimensional hypercube of 64 vertices in drawing spaces of two and three 
dimensions. 

Figure 10.11: 6-Dimensional Hypercube in Two and Three Dimensions 

The complete bipartite graph Kni,n2 has n!+n2 vertices and n!n2/2 edges. Figure 10.12 

shows two two-dimensional drawings of Ke.e-  In the drawing on the right, the vertices 
have been constrained to lie on a circle. 
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Figure 10.12: The Complete Bipartite Graph Ke.s 



Finally, the complete graph Kn has n vertices, each of degree n-1. Figure 10.13 shows a 
two-dimensional drawing of K30. We have made the vertices a bit larger so that they are 

clearer against the clutter of the 435 edges. 

Figure 10.13: The Complete Graph K30 



11. Quantitative Results 

While the previous chapter illustrates output generated by our algorithm, the drawings are 

fairly typical of those produced by all force-directed algorithms. Given that our main 

contribution is to improve the performance of such algorithms, we now shift to a more 

quantitative perspective to demonstrate this improvement. 

We do so in three ways. First, we analyze our approach and compare it to others in terms 

of its computational complexity. Unfortunately, this analysis does not help us understand 

the number of iterations required to converge to a locally optimal drawing. We therefore 

perform experiments to see how the number of iterations required for convergence 

depends on both the size and density of the graph. Finally, we look at the time required to 

compute each of these drawings, and compare our times to those presented in other 
papers on force-directed algorithms. 

We obtained all of our results with a Java implementation of our algorithm running on a 

Pentium 133 MHz machine under the Microsoft Windows 95 operating system. We 

used Sun Microsystems's JDK version 1.1.7 as our Java compiler and interpreter. 

11.1. Computational Complexity 

The computational complexity of an iteration, as shown in Chapter 6, is 6(m + n log n). 

Briefly reviewing, we take 0(m) time to compute the spring forces, 0(n log n) time to 

compute the vertex-vertex repulsion forces using the Barnes-Hut algorithm, and 0(m) 

time to compute the vertex-edge repulsion forces using distance cut-offs. 

This computational complexity compares very favorably to those of other algorithms in 

the literature, as shown by the table in Figure 11.1. We note that, for the algorithms of 

Kamada and Kawai [KK89], Davidson and Harel [DH96], and Tunkelang [Tu94], we 

report the complexity of n iterations, since, for these three algorithms, each iteration only 

moves a single vertex as compared to moving all n vertices in all of the other algorithms. 

We also recall that Kamada and Kawai's algorithm uses a preprocessing phase that 

requires 0(n2) space and 0(n3) time. Finally, we note that some of the running times 

depend on the distribution of vertices being sufficiently uniform—namely, the 

computation of vertex-vertex repulsion forces in Fruchterman and Reingold's "grid 

variant" and computation of vertex-edge repulsion in our own algorithm. 



Springs 
Vertex-Vertex 

Repulsion 

Vertex-Edge 

Repulsion 
Crossings TOTAL 

[Ea84] 0(m) 9(n2) 9(n2) 

[FR91] e(m) 
9(n2) 

6(n) for grid variant 

9(n2) 

9(m) 

[FLM94] 0(m) e(n2) 9(n2) 

[Tu94] G(m) 
6(ni!) 

6(n) for grid variant 
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9(m) 

9(m2) 

9(m) 

9(m2) 

9(m) 

[KK89] 9(n2) 9(n2) 

[DH96] 9(m) ein2) 9(nm) 9(m2) 9(m2) 

proposed 

algorithm 
0(m) 0(n log n) 0(m) 

9(m + 

n log n) 

Figure 11.1: Computational Complexity of Computing the Negative Gradient 

As we can see in the table, the computation of vertex-vertex repulsion forces is generally 

the bottleneck. The Barnes-Hut algorithm allows us to reduce the complexity of this step 

from 9(n2) to 9(n log n) without incurring the extreme loss of accuracy of the "grid 

variant" method (i.e. distance cut-offs). Unlike several of the algorithms, ours does take 

vertex-edge repulsion into account; unfortunately, including edge-crossings would not 

only be expensive, but would also rule out our optimization approach. 

11.2. Number of Iterations 

We have seen that the running time of our algorithm on a single iteration is 

asymptotically better than those of the published force-directed algorithms. We now look 

at the number of iterations required for convergence. 

Unfortunately, all of the papers in the literature are evasive on this point. Most use a 

fixed number of iterations; Kamada and Kawai are the exception in that their termination 

condition depends on the maximum energy among the vertices. The authors that 

comment on the number of iterations generally speculate that it is proportional to the 

number of vertices. Unfortunately, there is no systematic study of the performance of 

graph drawing algorithms on large graphs, perhaps because the 9(n ) inner loop of the 

published algorithms makes such a study prohibitive. 



In order to gain some insight into the number of iterations required for convergence, we 

ran a suite of experiments. We used several families of graphs: paths, cycles, complete 

binary trees, square meshes, hypercubes, and complete graphs. For each family, we 

selected a set of graphs of varying sizes, in order to measure the number of iterations as a 

function of the size. In order to test the relative performance of steepest descent and the 

conjugate gradient method, we tested all of our graphs with both optimization procedures. 

For each graph and optimization procedure, we ran our algorithm ten times on random 

initial drawings, and then computed the mean number of iterations required for 

convergence. We used a straightforward, if conservative, convergence criterion: the 

algorithm terminates when an iteration moves no vertex more than half of a pixel. Since 

our line search is reasonably accurate, this criterion all but guarantees that the final 

drawing is visually indistinguishable from a local optimum. 

The plots that follow confirm two observations that we have made in earlier chapters. 

First, the conjugate gradient method consistently outperforms steepest descent, and the 

gap widens as n increases. Second, the number of iterations required for convergence 

decreases as the density increases. We note that a conjugate gradient iteration is only 

slightly more expensive than that for a steepest descent iteration; in particular, computing 

the descent direction requires only one gradient computation in either case. 
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Figure 11.2: Performance on Paths 
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Figure 11.5: Performance on Square Meshes 
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Figure 11.7: Performance on Complete Graphs 

11.3. Running Time 

A review of the literature reveals that very few papers even consider the performance of 

force-directed algorithms on large graphs. In fact, we could only find one paper that 

reported running times for graphs of over a hundred vertices. 

Frick et al., report running times of 9.19 seconds for a complete binary tree of 127 

vertices, 9.54 seconds for a path of 128 vertices, 45.04 seconds for a binary tree of 255 

vertices, 37.93 seconds for a path of 256 vertices, and 71.78 seconds for a square mesh of 

256 vertices. They estimate that the number of iterations is linear in the number of 

vertices, and hence that their running time is 0(n ), which would imply that doubling the 

number of vertices would multiply the running time by eight. 

Not only do we achieve better running times, but our algorithm scales more gracefully 

because of both the Barnes-Hut and conjugate gradient procedures. If we make the same 

assumption as Frick et al. that the number of iterations is linear in the number of vertices, 

then our running time is 0(n log n), which would imply that doubling the number of 

vertices roughly multiplies the running time by four.  If, as convergence analysis of the 



conjugate gradient method suggests, the number of iterations is proportional to the square 
root of the number of vertices, then this difference is even larger. 

The plot below shows the running times for the families of graphs we have described in 
the previous section. As we can see, for graphs of the same number of vertices, the 
running time decreases as the density increases. Unfortunately, our implementation could 
not handle large complete graphs. 
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Figure 11.8: Running Times on a Variety of Input Graphs 



12. Conclusions and Future Work 

The principle contribution of this dissertation is to approach graph drawing using time- 

tested techniques from other fields. The original impetus for this work was an insight 

about replacing the fixed step size in published force-directed algorithms with a primitive 

line search procedure. Indeed, the adaptive line search procedure that we use is a major 

improvement on either using a fixed step size or complicating the algorithm with a 

"temperature" scheme. In general terms, however, we furthered the state of the art by not 

treating graph drawing as an isolated field. 

From numerical optimization, we learned that we could achieve a better rate of 

convergence with conjugate gradients than with steepest descent. We also learned to pay 

better attention to the smoothness of the objective function. Finally, we were able to take 

advantage of the method of exterior penalties, both to incorporate a general class of 

constraints into our model and to avoid poor local minima. 

From the many-body simulation literature, we borrowed the Barnes-Hut algorithm. This 

improvement is perhaps the most critical to making graph drawing scale to large graphs. 

Finally, we had some new insights specific to graph drawing. In particular, our handling 

of vertex shape and size and our introducing a vertex-edge repulsion force make the 

general graph drawing model much more relevant to real visualization problems. 

Of course, there are many open problems in graph drawing. Here are some questions that 

suggest directions for future work: 

1)  Can we make a rigorous theoretical analysis of the number of iterations required 

for convergence? 

Both the method of steepest descent and the conjugate gradient method lend themselves 

to theoretical analysis. Indeed, the former can be shown to have a linear rate of 

convergence, while the latter can be show to have a superlinear rate. A more accurate 

analysis of the rate of convergence requires that we know the condition number of the 

Hessian of the objective function we are minimizing. Since our objective function is not 

quadratic, the Hessian is not a constant, and therefore the condition number changes from 



iteration to iteration. A deeper understanding of the convergence properties of different 

optimization procedures on graph drawing problems probably requires analytical 

techniques that specifically address this varying condition number. 

2) Can we incorporate discrete terms, such as edge crossings, into a model based on 
continuous optimization? 

There is a consensus in the graph drawing community that, all else equal, it is best to 

avoid edge crossings. Unfortunately, all else is not equal. The main problem with 

incorporating edge crossings into a continuous optimization approach is that the number 

of edge crossings is a discrete term. What would be ideal is a continuous term that 

correlates, at least approximately, to the number of edge crossings. 

3) Can we design an algorithm that recognizes easy patterns in a graph and uses a 
divide-and-conquer approach to draw the graph more efficiently? 

A first step in this direction would be to split a graph into its biconnected components, as 

we discussed in Section 10.1. To review, the idea is to lay out the centroids of the 

biconnected components using a specialized tree-drawing algorithm, and then to apply 

our force-directed algorithm to each biconnected component separately, fixing its 
centroid to where the tree-drawing algorithm placed it. 

This approach, however, needs to address the subtlety that the edges connecting vertices 

in different biconnected components will be affected by the placement of their endpoints 

within their respective components. Moreover, it only helps us when we have a 

significant number of biconnected components. It would be nice to explore more 

sophisticated heuristics, such as partitioning the graph using small separators. 

4) Can we do better than local optimization, e.g. can we obtain a drawing whose 
energy is within some constant multiple of the globally optimal energy? 

This problem, as far as we know, has been completely open since Eades wrote his first 

paper on the spring model. An approach with guaranteed bounds in terms of the globally 

optimal energy would seem to require a much deeper understanding of the problem than 

we have thus far. We have nothing to offer but encouragement. 



5)  Can we achieve drawings that conform to the aesthetics of the force-directed 
model without resorting to continuous optimization? 

The only techniques in the graph drawing literature that address general graphs are the 
topology-shape-metrics model and the force-directed model. The former only applies to 
orthogonal graph drawing problems. The latter, while useful, is fraught with problems, 
ranging from vulnerability to poor local minima to performance issues. Is there an 
alternative technique for producing drawings with the aesthetics that the force-directed 

model aims to quantify? 
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